

TV colour synthesizer Audio pre-amplifier Speech processor

wireless world

AUGUST 1979 40p

TV colour synthesizer
Audio pre-amplifier
Speech processor

Telequipment gives you more'scope

From a simple single trace, battery/mains operated instrument small enough to be carried in a brief case to a sophisticated 50 MHz dual trace dual sweep oscilloscope
suitable for advanced computer applications Telequipmen bring you oscilloscopes for a wide range of applications together with a selection of plug-in units, accessories and a semi-conductor curve tracer.
To find out more contact your Telequipment area sales engineer, phone or write, we'll be pleased to help.

TELEQUIPMENT < (inil

Tektronix UK Limited, P.O. Box 69, Coldharbour Lane
Harpenden, Herts. Tel: 0582763141 Telex: 25559

Logarithmic generator.

cor sweep generator. Log or linear
frequency sweeper for audio testing, presenting audio testing, presenting cies, for example 20 Hz -

Victorian microwaves. 60 GHz oscillators, horn
aerials and solar radio astronomy were all working or attempted before 1900.

Microcomputer interfaces. Connecting micro-
computer buses to computer buses
peripheral equipment.

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

DON'T GAMBLE WITH PERFORMANCE BUY

LEVELL VOLTMETERS

A.C. MICROVOLTMETERS

$\begin{array}{ll}\text { VOLTAGE \& } & 15 \mu \mathrm{~V}, 50 \mathrm{VV}, 150 \mu \mathrm{~V} \ldots 50 \mathrm{~V} \text { fsd. } \\ \text { dB RANGES } & \text { Acc. } \pm 1 \% \pm 1 \% \mathrm{fs} \pm 1 \mu \mathrm{ats} 1 \mathrm{kHz} .\end{array}$ Acc. $\pm 1 \% \pm 1 \% \mathrm{fsd} \pm 1 \mu \mathrm{~V}$ at 1 kHz.
$100,-9015 \mathrm{~dB}$.
Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 600 \Omega$ $\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz ,
 TM 3 f filter switch: LF cut 10 Hz ,
HF cut $100 \mathrm{KHz}, 10 \mathrm{KHz}$ or 350 Hz .
Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<20 \mathrm{pF}$.
On 50 V to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$. 150 mV at fsd.

ำ.

H.F. VOLTAGE \&
dB RANGES
H.F. RESPONSE
L.F. RANGES

AMPLIFIER OUTPUT
TMMA $£ 170$
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} .3 \mathrm{f}$ fd.
Acc. $\pm 4 \% \pm 1 \%$ fsd at 30 MHz. $-50,-40 \cdots+20 \mathrm{~dB}$.
Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ ret $1 \mathrm{~mW} / 50 \Omega$. $\pm 3 \mathrm{~dB}$ from 300 KHz to 400 MHz,
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz . As TM 3
Square wave at 2 OHz on H.F. with amplitude preportional to square of input.
As TM3 on L.F. $\underset{\text { TM }}{\text { TVE }} £ 180$

D.C. MICROVOLTMETERS

voltage ranges
Current ranges $\begin{aligned} & \\ & \text { RECORDER OUTPUT } \\ & \pm 5 \mu \mathrm{Vat} \pm 10 \% \mathrm{fsd}, \pm 5 \mathrm{mV} \text { at } \pm 50 \% \mathrm{fsd} \\ & \pm 50 \mathrm{mV} \text { at } \mathrm{fsd} .\end{aligned}$ Tve9 $\mathbb{T M O}$

MULTIMETERSTOTHE FORE

Gould Advance proudly present our new Alpha IV.
The fourth generation of an outstanding multimeter, its price of $£ 105^{*}$ is so reasonable when compared to those of its competitors - in these inflationary times

While the improved spec. and high reliability are a
result of the experience we gained from the first three models

The Alpha IV measures a.c. and d.c. voltage and current plus resistance - with a choice of 25 accurate measurement ranges. A" 2000 Count" large, clear I.c.d. display.

And true ease of use with its long life battery power

Plus a two-year guarantee (in common with all our instruments) Buy one now. (Or four!) * Valid until 30th Sept. 1979 V.A.T. extra @ $15 \%+£ 3.00$ carriag per instrument and its accessories

BOU

WIRELESS WORLD, AUGUST 1979
PRIME TTL \& CMOS AT LOWEST PRICES

NLL NEW NEW

REAL~STATE OF~THE~ART

ELENCO ELECTRONIC/DIGITAL DESIGN STATIONS
 against shorts. Whether a
homes and industry.

 BRAND NEW FROM EICO MODEL 390 Function/Sw

The most versatil ELENCO PRECISION
Digital multimeter 1200 B

RONIC / DIGITAL DESIGN STATIONS

P
Wew 10 Hz to 600 MHz frequency counters from Optoelectronics USA each

FAIRCHILD RED LED LAMPS

FAIRCHID "THE COLOSSES JUBB LED READOUT FAIRCHILD SUEER JUMBOUS LE READOUT
A full. 80 inch Charater. The biggest readout we have
ever soldi Super efticient.

FND 850 Common Cathode
E2 en each
$£ 1.50$ each 100 off

${ }^{9} 9 \mathrm{~g}$ gaor 10 off
mand

MC $\begin{gathered}\text { micro } \\ \text { circuls }\end{gathered}$

5

YOUR COMPLETE RANCE OF ELECTRONIC HAFDWARE.

BIMTOOLS + BIMACCESSORIES

MAINS BIMPRILLS

BimDAPTORS

鲜 $\begin{aligned} & 11 \mathrm{~mm} \text { dia. } 3 \mathrm{~mm} \text { high, grey rubber self-adhesive enclosure feet. } \\ & \text { f0.77 per pack of } 24\end{aligned}$

12 VOLT BIMDRILLS
2 small, powerful drills easily hand held o.
Integrai bn/ off switch and 1 metre cable.

BIMPUMPS

 led and 4 BIMFEET supplied.

 DIL
COMPATIBLE bimboards

Accept all sizes
4.50t in
packages as well as as
as packages as well as
resistots.oiodes,
capacitors and LEDs. capacitiors and LED
Integra
up eas sush sirips
unde for up each side fo
power lines and Component Support
Bracket for hold ing
lamps, switches and lamps. swithes and
fuses ste. Avaiiable
as single or multiple nits, the latter mounted on 1.5 mm thick black aluminium back plate which sta
hon slip rubber feet and have 4 screw erminals for incoming pow BIMBOARD 1 has 550 sockets, multiple units
Utilising 2,3 and 4 BIMBOARS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm
$10.1^{\prime \prime}$ matrix.

BIMBOARD 1 £ 8.8 BIMBOARD 2 £21.0 BIMBOARD 3 £29.84
IMBOARD 4 f38.79 DESIGNER PROTOTYPING SYSTEM 2, or 3 BIMBOARDS mounted on BIM 600

 back protection. Power rails brought out to cabi
clamps that accept strioped wire or 4 mm plug.

Out of bounds

A power amplifier has to produce an adequate utput voltage. This voltage has to be able to change at a sufficiently high rate to trace accurately any possible programme waveform. It has to be able to do all this indep

These are the three dimensional limits of a power amplifier, usually referred to as voltage clipping level amplifier, usually referred to as

If an amplifier is operated so that none of these limits is exceeded, and is otherwise competently programme. (If the programme were auditioned at the input or the output of such an amplifier there would be
no audible change).

QUAD amplifiers are such arnplifiers.
For further details on the full range of QUAD products write to

The Acoustical Manufacturing Co. Ltd.
Huntingdon, Cambs. PE18 7DB. Telephone (0480) 52561

QUAD

for the closest approach
to the original sound
OUAD is a registered trade mark.

WW - 055 FOR FURTHER DETALS

SPEAKER KITS FROM KEF.
 Now you can build a loudspeaker

 system which incorporates all the featuresdeveloped for the world famous KEF Model 104 aB , and hear its quality at your KEF dealer
.

KEF KIT MODEL 104aB
The kit contains two baffles (only one illustrated) with the two drive units already preassembled, pretested and fully wired
through an Acoustic Butterworth filter through an Acoustic Butterworth filter
network. The mid frequency response can be network. The mid frequency response can be
adjusted by a 3-position contour control, and the tweeter is fuse protected.
The lowest frequencies come from an acoustically coupled bass radiator, without
overall loss in efficiency from such a compact enclosure.
The instruction leaflet takes you through the enclosure construction sequence step-by-step
with photographs to help. Write now for photographs to help.
Write now for more details, and the name of your nearest KEF dealer where you can hear
how good the Model 104 aB system is, before you buy the kit.
Tovil, Maidstone, Kent MEI5
Telephone: 0622-672261. Telex: 96140
(1)

WIRELESS WORLD. AUGUST 1979

ELECTRONICS BY NUMBERS LED BAR GRAPH UNIVERSAL INDICATOR
Now using EXPERIMENTOR BREADBOARDS and following the instructions in
"Electronics by numbers" ANYBODY can build electronic projects.
Look at the diagram resistor with a value between 120 to 270 ohm. Plug it into holes $\times 20$ and $D 20$, now
take LED 1 and plug it into holes E22 and take LED 1 and plag it into holes E20 and
F20. Do the same with the Diodes e.g. plug F7 into holes G7 and G10.

YOU WILL NEED
EXP. ANY EXPERIMENTOR BREAD.
D1 to D15-Silicon Diodes (such as 1 N 914)
R1 to R6-From $120-270$ ohm resistors $\% / 4$
LED1 to LED6 - Light emitting dio
LED BAR GRAPHS are replacing analogue instances.
Instancess.
This circuit uses the forward voltage drop of
diodes to determin diodes Any type of diode can be used but you
up.
must must use all the same type. For full workin details of this circuit fill in the coupon.
It you have already built the Two-transisto Radio and the Fish 'n'cli iks projects ou voull will
find that you can reuse the components find that you can reuse the components
from these projects to build other projects from the series.
FILL IN THE COUPON AND WE WILL COPIES OF "ELECTRONICS FUL COPIES OF "ELECTRONICS
NUMBERS" PROJECTS No 1, No 2
and No 3 .

PROTO-CLIP TEST CLIPS.
Brings IC leads up from crowded PC boards.
Available plain or with cable with clips at
Available plain or with
one or both ends.

Europe, Africa, Mid-E ast: CSC UK LTD.
DEPT. TTT 2 Unit 1 , Shire Hill industrial Lstate.
DEPT. 7 T2 Unit 1 , Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3 aio. Seltonnonald SAF,
Telex: 817477 .

EXPERIMENTOR BREADBOARDS No soldering modular breadboards, simply plug components in and out of letter number identified
nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of an size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of a
EXP. 4 B .

PROTO-BOARDS
THE ULTIMATE FOR THE MINIMUM COST. TWO EASILY ASSEMBLED KITS.

EXP. 325. chip circuits.
Accepts $8,14,16$ and up to 22 pin IC's. ONLY $£ 1.60$.

B. 6 Kit 630 nem PB. 6 Kit, 630 contacts, four 5 -way bindin
posts accepts up to six 14 -pin Dips. PROTO-BOARD 6 KIT. $£ 9.20$

EXP. 350.
EXP. 350 .
270 contact
3.1 270 contact points with
two 20 -point bus-bars.

EXP. 300.
550 contacts
with two
with two
40-point
bus-bars. bus-bars.
$£ 5.75$.

EXP. 650 for Micro
EXP 4B.
More bus-
bars.
£2.30.

ALL EX
series.

ALL EXP. 300 Breadboards mix and match with 600
PROTO-BOARD 100 KIT $£ 11.80$ HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT
CSC UK LTD. DEPT. TT2 Unit 1 , Shire Hill Industrial Estate, Saffron Walden, Essex CB1 1 3AQ.

ADDRESS

WW - O44 FOR FURTHER DETAILS

FILL IN COUPON \& RECEIVE FREE COPY OF ELECTRONICS BY NUMBERS PROJCCTS Nos I, 2 AND 3

PROOPS

BROS. LTD.
MR RANGE - DC MOVING COIL TYPE

ED 107 EDUCATIONAL RANGE

Dimensions: $78(H) \times 90(0) \times 100(\mathrm{~W}) \mathrm{mm}$
£3.50 aach including VAT. Add 50 p per item carriage and packing

Barclaycard \& Access Accepted - Order by telephone or post.
 Personal Shoppers: 52 Totrenham Cour Road, London W1P OBA 9.6 Monday-Saturday WW - 015 FOR FURTHER DETALLS

Hilomast Ltd

HILOMAST LIMITED
THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND el. MALDON (0621) 56480 TELEX NO. 995855

IFIT'S TIME YOU HADA NEWTIMER COUNTER,DCTO 35 MHz IS ENOUGH

Gould Advance have a wide range of timer counters. And here are two which should meet most engineers' needs.
Both the TC320 and the TC321 have made extensive use of the latest low-power circuitry (CMOS, Schottky and thick film resistor networks, for example) and we have no hesitation in offering a (seldom-used) 2-year guarantee.

Check the functionswhilst remembering that both instruments are truly portable when internal rechargeable batteries are fitted as an option. * Frequency (Manual and Autoranging) $*$ Single Period * Multiple Period * Multiple Period Average (Manual and Autoranging) * Time A-B * Automatic Pulse Width* Count * Totalise * Count A/B-B * Ratio.

Of the two instruments the 321 has the more sophisticated 'spec. But both are interesting.
Do ask for data. It'll be enough to impress you.

\rightarrow GOULD
 An Electrical/Electronics Company

 Gould Instruments Division,Roebuck Road, Hainault, Essex $1 G 6$ 3UE Roebuck
Telex: 263785 TELEPHONE : 01-500 1000

The FM/AM 1000s with Spectrum Analyser
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

 or continuous long havile receipition.

CEC
sole distributor europe of NEC RADID AMATEUR ANO CB EQUIPMENT TELEF: O991/46444., TLLEX 64077 CEC CH
ww OU1 FOR FURTHER DETAILS

Hall Electric Limited International Semiconductor Distributor

THINKDFA SHAPE

Whatever it is, the |-7||- 'S' range of power amplifiers will handle it

 H||HS^{\prime} range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D

Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel $900 \mathrm{wr.m.s}$. in bridge mode DC-20 KHZ at full power 0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D
Single Channel
19" rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channe
DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR --I||- ELEC-

WW - 047 FOR FURTHER DETALS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and
special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW - 028 FOR FURTHER DETAILS

Tecknouledgey for sule.

[^0]

MCP Electronics Limited Station Wharf Alperton Wembley Middx. Telephone: 01-902 5941

The King of Valves

Genuine Gold Lion valves-hand built, utilising advanced pumping
techniques and individually tested techniques and individualy ested
to a tight specification -are your answer to the high quality sound demands made by musicians and listeners alike.
GoldLion KT77's and KT88's covering 30-200 watts, are now available from M - OV along with data and distribution details. Find out all about the King of Qualityfrom M-OV.
© Trade Mark of M-OV Audio Valves.
MOV
SEC
 ww - 005 FOR FURTHER DETAIS

FOR POWER

 SEMICONDUCTORS INRINTERNATIONAL RECTIFIER

Diodes

Thyristors
Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays Silicon Stacks Surge Suppressors

IN A HURRY!

 070-6814931HARMSWORTH, TOWNLEY \& CO. LTD.

[^1]CAN YOUR BUSINESS
REALLY OPERATE SUCCESSFULLY
The SEMEI 1. Microprocessor can be used for var, Yages, Invoices,
Stock-Control, School Computor Studies, Wordprocessing, sales, Stock-Control, School computor stadies,
Purchasing, Addressing miprocessing, sales,

TELEPHONE: TAVISTOCK 5439 TELEX: 45263

MICROPROCESSOR

1isting all Properties in groups 1e. Size, Cost, Area) For doing
all Bookings: Coach Tour operators, Travel Agents, Hotels, etc. The SENEI 1 . Can also be used for operating Machines and The Sulpment.
Equit

STRUTT
Electrical and Mechanic
Engineering Ltd.
3c BARLEY MAAKEN STREET, TAVISTOCK,

The MICRÓRROCBSSOR is permuqs the

WW - OOS FOR FURTHER DETALIS

you get precision, operator safety, a choice

of soldering iron tips and superb value at $£ 9.95$ (+VAT)
The new PSU 6 volt soldering station, operating at $360^{\circ} \mathrm{C}$ has its own compact power unit, a double insulated transformer and comes complete with an Oryx 6 watt miniature soldering iron, sponge, spong

Greenwood Electronics

Portman Road, Reading, Berks. RG3 1NE Tel: (0734) 595844 Telex: 848659 ww - 017 FOR FURTHER details

cmos		$t \star \boldsymbol{t}$	MEMORIES	$t \rightarrow t$	4066	3 5 5
4000 4001	.15 .15				4070	.15
${ }_{4}^{4001}$. 15		75110 Interface	. 54	4071 4072	.15
4007	-15	2104-2 4096 bit DRAM (200ns) 6.50	75110 inierace	. 54	4073	.15
4011 4012	.15	4116-3 16kX1 DRAM (250ns) 9.00	5325 Memory Driver	. 97	4075 4076	. 73
4013 4015	. 26	4118 1k X 8 SRAM 19.50	Z-80 CPU 4MHz	11.50	4077 4078	15 .15
4016 4017	. 287	74118 AN 256 bit PROM 2.00	Z-80 PIO	9.50	4081 4082	$\begin{array}{r}15 \\ \hline 15 \\ \hline 15\end{array}$
4018	. 65				4093	. 39
4020 4021	. 67	2708 1k X 8 EPROM [450ns) 9.50				
4022 4023	. 65	LETUS GIV	E YOUA TIP		${ }_{8} \mathrm{DILS}$	
4024 4025	. 48	TIP 29A 31	TIP 34C	. 76	14 pin 16 pin	13 .14
4025	. 31	TIP 29C	TIP 35A	1.25	16 pin	. 14
4028 4029	. 74	TIP 30A .32 TIP 30C .36 P1P	TIP 35C	1.50 1.36	20 pin	. 21
4040	. 65	$\begin{array}{ll}\text { TIP 30C } & .36 \\ \text { TIP 31A }\end{array}$	TIP 36A	1.63	${ }_{24}^{22}$	$\begin{array}{r}.23 \\ .24 \\ \hline\end{array}$
4042 4043	. 57	TIP 31C	TIP 41A	47	${ }_{28}^{24} \mathrm{pin}$. 31
4043 4044	. 57	TIP 32 隹 33	TIP 41C	53	40 pin	
${ }_{4046}^{4044}$. 82	$\begin{array}{ll}\text { TIP 32C } & .336 \\ \text { TIP 33A }\end{array}$	TIP 42A	$\begin{array}{r}49 \\ 5 \\ \hline\end{array}$		
4047 4049	$\begin{array}{r}.95 \\ .28 \\ \hline 8\end{array}$	TIP 33A TIP 33C .57 1 Sa	$\operatorname{TIP}^{\text {TPP }} 2955$	57		
4050	. 31	TIP 34A	TIP 3055	57		
4051 4052	. 51					
4053	. 51	, P\&P 30p			We welo	ccess
4060	. 94	Access Cards Welcome	Same Value 80	100		

STRUTT ELECTRICAL \& MECHANICAL зc barley market st. ENGINEERING LTD. TAVISTOCK, DEVON PL190

 TELEX 45263
instruments

OEM - let Drake Transformers advise you on a component specification and you on a component specification and design to solve that special problem. Preundertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.
Expertise and service put DRAKE Expertise and service put DRAKE

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

ELECTRONIC
INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATUURE

 Mode! "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$.
(VAT 15% EXTRA)
Witte for further details to
HARRIS ELECTRONICS (LONDON)
HARRIS ELECTRONICS (LONDON
138 GRAY'S INN ROAD, LONDON; WC $1 \times 8 A X$
1.38 GRAY (Phone 01-837 7937)
ww - 027 For further detains

WHY BUY A MICRO-COMPUTER FROM

BECAUSE

1) Established company trading since 197
2) Electronic servicing is our speciality 3) We have in house programmers/syste
3) We have our own service engineers 5) We will demonstrate the PET at your premises 6) We can customise the PET to your requirement
4) We can arrange finance
$8 \mathrm{~K} £ 550.00+$ VAT
166 £675.00
16 K E675.00 + VAT
$32 \mathrm{~K} £ 795.00+$ VAT
New Large
KKevboard PETS
Now
Keyboard 'PET
Now in Stock
Also
available
24 K Memory Expansion Boards (disk-compatible), only $£ 320+$ VAT
PET-compatible
Large Extension K K ual floppy disk unit with advanced operating system, only $£ 840+$ VAT
Telephone for complete system prices: Wide Range of Printers Available
If you require any more information or demonstration regarding the PET 2001/8 or any associated equipment, programs, etc., please
contact Mr. P. J. A. Warts or Mr. D. W. Randall at: PETALECT ELECTRONIC SERVICES LTD
$33 / 35$ Portugal Road, Woking, Surrey
Tel. Woking $69032 / 68497$ Cherssey Road, Woking, Surrey
Tel. Woking 20727/23637
wW - 046 FOR
All 'PETS' sold with a Basic Tutorial Tape Books, Programs, etc.

HER DETAILS

\because DUAL 5 Volts

The cards are designed to Eurcard
stand

straight int int you your card ord or or cose tot trit | ORDERCODE |
| :---: |
| $89-2655 \mathrm{G}$ | $89-2665 \mathrm{~K}$

o.-.677K
$88 .-70118$
89.9018 H

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive colour and mono. Standardi or custom built units for estab-
lished or mor lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. Fuil $\overline{\text { Training }}$ courses are individually failored to customers?
requirements.

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD. willis Road, Croydon, 01-684 1422, 01-689 8741
CRO2XX. Tel: $01-6898741$ W - 023 FOR FURTHER DETAILS

-०००००००००००००००००००००००००००००००००००००

THRUUINE WATTMETER
The Standard of the Industry What more need we say.

\author{

}
aspen
electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX HAA QUR
TELEPHONE: $01-8681188-$ TELEX 8812727

Model $H F C 600-D \quad 1 \mathrm{HZ}=600 \mathrm{MHZ}$ Frequency Counter fitted
with XTAL Oven 8 digit. $5^{\prime \prime}$ LEDs driven to high brightness. Ranges $=1 \mathrm{HZ}-60 \mathrm{MHZ}=60-600 \mathrm{MHZ}$.
Gate $=$ XTAL 5.24288 MHZ 1.0 or .1 sec . by pushbutton
selection.
Input $\operatorname{lmp}=50 \Omega$ at $60-600 \mathrm{MHz} 1 \mathrm{M} \Omega$ par with 15 PF at
60 MHZ . Typical Sensitivity $=10 \mathrm{mV}=50 \mathrm{MHZ} .20 \mathrm{mV}=200 \mathrm{MHZ}$.
Resolution $\equiv 1 \mathrm{~Hz}=0.60 \mathrm{MHZ} .10 \mathrm{HZ}=60-600 \mathrm{MHZ}$
Typical Stability $=3$ parts 10 per ${ }^{\circ} \mathrm{C}$ after 1 min . warm-up
time.
ower $=100-240 \mathrm{~V}$ A.C. $40-60 \mathrm{~Hz}=9-16 \mathrm{~V}$ D.C. Size $=$ H. $68 \mathrm{~mm} \quad W=263 \mathrm{~mm} D=216 \mathrm{~mm}$. (Provision for int.

Price £145.00 +
7 HUGHENDEN ROAD, HASTINGS, SUSSEX, TN 34 3TG ENGLAND. Télephone: (0424) 428131

fact:
 this condenser microphone sets a new standard of technical excellence.

SM81 Cardioid Condenser Microphone
\square

wireless world

Spread the word

TOM IVALL, M.I.E.R.E. Deputy Editor:
PHILP DARRINGTON
Phone $01-2618435$
hone 01-2618435
Technical Editor: GEOFRERY SHORTER, B.S hone 01-261 84

Projects Editor: MIKE SAGIN
Phone: 01-261 8429

News Editor: RAY ASHMORE, B. Sc., G8KYY
Phone 01-261 8043
Communications Editor:
Drawing Office Manager

Production \& Design:
ALAN KERR
Advertisoment Controller
. BENTON ROWEL
Advertisement Manager:
OB NIBBS
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037
BARRY LEARY
PARRY LEARY $01-2618515$
Classified Manager:
BRIAN DURRANT
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
NEIL MCDONNELL
(Classifitiod Advertisements)
JHN GIBBON (Make-up.and copy)
Phone $01-2618353$
Publishing Director:
GORDON HENDERSON

Audio processor design

Improving the intelligibility of s.s.b. communications

by P. Anderson, G80AV

After monitoring many amateur radio transmissions, the author came to the
conclusion that most of the deficiencies in sound quality could probably be corrected, or at least much improved, by number of fairly simple modifications. The unit described in this article w possibilities of improving the quality of signals transmitted from a typical mateur radio station under both local ateur radio station under

COMMON DEFECTS in sound produc tion from an amateur transmitter in clude woolly, muffled or excessively toppy audio, insufficient or poor com pression on frequency modulated torted compression on single-sideband transmissions. Most of the defects are subjective in nature and this applie particularly to the punchiness of the correct frequency response, amount of compression and voice quality of the operator. The unit described was de signed to correct these types of defect However, this only goes part. way diagram of the audio processor is shown in Fig. 1
While involved in this project, the athor decided to find a way of mproving the intelligibility of the voice was hoped that this could be done without degrading the audio quality excessively. Some transmissions, fo example, in an attempt to improve in so distorted that they have the revers effect. One part of the unit consists of speech processor based on the techni-

Front panel of audio processor unit que of clipping a single-sideband radio frequency signal, but with this techeach circuit is dynamically able to cope with the maximum, expected signal level without adding any distortion to that caused by the actual clipping circuit. This unit has proved to be caphigh level of clipping while adding only relatively small amounts of distortion to the signal.

Development history

Listening tests with several types of microphone, including those designed applications, suggested that three main characteristics could need attention These are: excessively wide frequency response, which causes 'woofy' bass ponses, which cause wolly or muffled

Fig. 1. Block diagram of the audio processor

sounds - or the opposite effect of thin bodyless quality; and lack of 'punch' DX quality (so important if really effective audio compression is required), which resonant peak in response at the higher end of the frequency range. For simplicity the author decided to use one circuit for each function, to allow the design to be easily altered. The first
circuit used was the microphone amplifier, which primarily amplified the low output of most microphones up to a level of about 1V, and provision was also made for fitting a resonant circuit to boost the higher audio signals. The be tilted about the centre of the frequency range and the third circuit consisted of steep high and low pass filters which removed unwanted exremes of audio signal. This arrangeunit, was able to provide clear sounds from all of the microphones available. The microphone which gave the best account of itself was an electret type incorporating its own preamplifier,
which produced superb quality sounds even though it was totally unsuitable before being 'processed.' In fact, this commonly-available microphone is probably the match for the unit, for sible signal quality.
Attention was then turned towards finding a satisfactory method of improving the intelligibility of audio signals during long distance comweak. The main requirement is to compress the dynamic range of the audio signal such that all of the vital intelligence to be conveyed is kept at the
maximum permissible signal level and maximum permissible signal level and doing this is to clip the audio signal by

WIRELESS WORLD, AUGUST 197 the use of back-to-back diodes either feedback circuit of an amplifie Although the second method sound better, because it does not produce such hard clipping and hence produces les unpleasant distortion, in practice more than about 4 dB improvement in subjective audio level without intro ducing high levels of distortion. An utomatic gain control approach wa also ruled out, because it does not combrings all the speech peaks to the sam evel, which was not desired. The de ired property a processor must have is compress the dinnamics one signa without distortion, so that all informa herefore have a better chance of bein above the noise floor, and audible at the receiving end.
It was decided that the single ideband clipping method was mos cause it has two major advantages. Firstly, any harmonic components produced appear at twice the frequency of the clipped signal and in this case, be cause the frequency used was 10.7 MHz
the harmonics were far removed from the audio frequencies. Secondly, as a direct result of this effect, there is very much less intermodulation between audio frequency components and the only intermodulation products provoice tones applied to the clipper. If the signal is well filtered before processing the maximum number of harmonics is unlikely to exceed four (2nd, 3rd, 4th may not be any at higher frequencies. This is one reason why it is often beneficial to boost high frequencies prior to clipping so that harmonics produced by audible range where they cannot be filtered out. Products of mixing that does occur are of relatively lower amplitude (-10 dB) and so do not be come dominant

Fig. 2. Performance characteristics of and bandpass filter used in the oudio processor

With the final design, which will com press audio signals by up to 30 dB while generating a relatively small amount of audible distortion, sinewave inputs appear at the output virtually unchanged as the clipping level is in-
creased to its maximum level and the limit is only reached when the modulator is overdriven and itself produces distortion. However, because compression above 20 dB . igibility the circuits were set up to provide this level as a maximum (leaving 10dB headroom for speech peaks), so avoiding any additional audio signals sound os loud and as intelligible, as an unclipped signal peaking 10dB higher than the clipped peanal.
Circuit description
All components used in the unit are readily available and, with the exception of the i.f. block filter, are mainly low cost. A different type of filter may desired, and there is circuit changes, if different i.f. frequency should not be used provided there is sufficient side-
band selectivity. An s.s.b. filter designed
or the purpose should provide eve etter results, particularly at lowe frequencies where the effects poor selectivity are more apparent ave been used more commonly used types as the ave several desirable characteristics devices. These include lower noise, ab sence of crossover distortion, highe output current capability, and the he negative supply rail Thes parameters are all used to advantage in his unit.

Microphone amplifier

L_{1}, C_{1} and C_{2} filter out any radio requencies picked up on th microphone cable. It is preferable tha hese components are mounted behin he input socket and that they ar carrying the signals to the microphone preamplifier board, to the input socke o simplify the bias and feedback rrangements, the inputs to the firs ntegrated circuit IC_{1} are biased to 0.5 for the input levels expected. The gain is controlled by feedback, which avoid any problems of noise or overload, and high frequency lift is provided by centred on 4 kHz . In addition, the Q the circuit is controlled to provide the optimum shape for the response. De

7

WRELESS WORLD, AUGUST 1979
4 Fig. 4. Audio filter board and meter
creasing the value of R_{4}, for example, will increase the lift and broaden its pass filter this provides with the bandat 3 kHz . Frequency response characteristics for the microphone amplifier
are shown in Fig. 2a

Tone control

In addition to providing a flat response over the centre frequency range, the feedback network enables the frequency response to be tilted about tremes providing 6 dab lift or cut at ex-
tree Fig. 2b). This operation can be explained by reference to Figs 3 a and 3 b , which show the equivalent circuit at low and high frequencies respectively. Clearly the effect of signal strength is increased as the wiper approaches the input end, and decreased as the wiper is rotated towards the output end.

Band pass filter

The filter has the frequency response characteristics shown in Fig. 2c and consists of two modified Sallen Key
type circuits, one connected as a high

Fig. 5. Circuit diagram of the r.f. clipper board
pass the other as a low pass. The - 3dB points, which are at 300 Hz and 3 kHz respectively, each have a roll-off of did/octive thereafter and this was had roll-offs of $54 \mathrm{~dB} /$ octive, but this did not provide any additional advantage.) Each circuit has unity gain at 1 kHz .

Metering

To incorporate some method of monitoring the signals applied to the tem of l.e.ds, but when no easily viewable arrangement was found he adopted an edge-reading meter. This meter had a 10 dB to full scale which was range from the normal variation in speech lovel during communication. Careful voice modulation can keep this down to within a few dB , but certain sounds will, pround for much higher levels. The ' 1 produce a level approaching 10dB above the normal speech level. In normal use the aim is to keep the needle averaging half scale as this will give about 15 dB of clipping on normal speech and a little, provide about optimum readability under all conditions. IC_{3} in Fig. 4 operates as a normal voltage amplifier on this i.c. being able the meter relies on this i.c. being able to supply fairly
high output currents to quickly charge up C_{21}. With the input preset correctly adjusted, a signal equivalent to 10 dB
below peak will just overcome the ward voltage drop of the diodes, and with a signal equivalent to peak (0dB) the voltage stored on C_{21} will provide enough current through R_{24} and the use of a $100 \mu \mathrm{~A}$ movement allows C_{2} to discharge slowly, permitting mete readings close to the true peak value. In practice the reading is about 3dB low ut this can be corrected during settin up.

Speech clipper
he r.f. clipper shown in Fig. 5 is divided nto four main sections. The crystal controlled oscillator operates at a littl below 10.607250 but the exact frequency will be within the pulling range of the crystal (in fact a 10.7 MHz crystal will pull far enough if one is to hand). It use the common Colpitts circuit loosely coupled into an emitter follower buffer demodulator with a signal of 1 V pk-topk. The modulator itself is built around the MC1496 balanced-modulator demodulator i.c. which receives the local oscillator signal at pin 10 and the
audio at pin 1. The output available from pin 6 is a double-sideband supressed carrier signal so the signal is filtered to remove one of the sidebands with R_{47} and C_{34} define the optimum impedance the filter should see for cor rect performance and a similar arrange-

Typical spectrum for oudio Note: continuation of spectrum below fundamental by cr
of high order harmonics

From mix of
higher harmonics
beyond filter

Fig. 6. Typical frequency spectrum diagrams showing the differences between audio and s.s.b clipping
 end ($910 \Omega / 22 \mathrm{pF}$). If a different
filter is used these components will probably need changing to suit the differing filter requirements but do not alter the value of R_{38} as this will affect the balance of the modulator. The filter used was the KVG type marily for f.m. It, has a bandwidth of $\pm 3.75 \mathrm{kHz}$ for - 3 dB relative to 10.7 MHz centre frequency. A filter designed especially for s.s.b. would probably be
better, but these tend to be more expensive and are not so readily available on the surplus market. During alignment the oscillator frequency is adjusted so that the upper sideband prois placed at the -3 dB point of the filter. This ensures maximum suppression of the other sideband which is only 600 Hz lower in frequency and with careful adjustment, $26 d B$ sideband rejection is Rejection of the carrier is not so important because the modulator provides about 60 dB .of suppression at these frequencies when the carrier balance is correctly adjusted. The filter output is
then amplified by Tr_{6}, a low noise f.e.t., which has provision for gain adjustment and provides a nominal 10 dB gain to drive the clipper. The clipping is performed by $\mathbf{I C}_{5}$, a device primarily which performs well in this application, suppressing harmonics so that no filtering is necessary. The f.e.t. preamplifier may be omitted if the full 30 dB clipping potential is not required. Fig. 6 basic difference between audio and s.s.b. clipping and further information of s.s.b. clipping is given in Fig. 7.
If you wish to omit the f.e.t. stage, connect C_{35} only and then connect a
560Ω resistor in series with a $0.1 \mu \mathrm{~F}$ capacitor between the live end of C_{35} and pin 1 of IC_{5} (the input of the i.c. is a defined $300 \Omega)$. The output of IC_{5} is attenuated by R_{52}, R_{59} etc., to provide a evel suitable for feeding into the deMC1496. The modulator provides a good quality audio signal with very low noise levels, even with the high i.f. gain. R_{66} presets the level of the output, which is filtered by $\mathrm{C}_{47}, \mathrm{C}_{48}$ and R_{60}
before being buffered by Tr_{7}

Construction

Layout of the audio board is not critical, and it may be constructed on any circuit board. It is suggested that all leads carrying audio be screened to avoid r.. the chassis together with the earth lines of the p.c.bs. The microphone input cable should be earthed at both the input socket and the p.c.b. and the r.f. be mounted behind the socket and also earthed. Any press-to-talk lines should be similarly earthed and decoupled at

WIRELESS WORLD, AUGUST 1979

Fig. 8. External connections and power supply details
TP_{4}

$T P_{5}$

TP

L.O. too low

Fig. 9. Waveforms expected during the alignment procedure

If adequate carrier and sideband sup pression is to be obtained, the speech clipper module must be laid out on a ground plane and it is also desirable to it screens where shown. The filter centre should be mounted across the centre of the filter on the track side be solidly bolted under the fixing bolts of the filter. Preferably, the whole unit should be built into a metal screened cosure to avoid r.f. pick-up which can cause howl-round problems, when
all of the controls are set at high level. Fig. 8 shows the power supply used in
the original unit, but any well-smoothed 12 to 15 V supply will do.

Alignmen

The alignment procedures are quite simple and require an audio signal gemHz bandwidth. First inject a 10 mV , 1 kHz sinewave into the microphone socket and observe the output at TP2.

Specifications

INPUT sensitivity overload	$100_{\mu} \mathrm{V} \text { to } 10 \mathrm{mV}$ $100 \mathrm{mV}$
OUTPUT adjustme	tment 0 to 50 mV
High freq. lift	Ift 10 dB at 3 kH
TONE range \pm	$\begin{aligned} & \pm 6 \mathrm{~dB} \text { relative to } 1 \mathrm{kHz} \text { at } \\ & 300 \mathrm{~Hz} \text { and } 3 \mathrm{kHz} \text { (see Fig. } \\ & 2 \mathrm{c}) \end{aligned}$
MAXIMUM COMPRESSION	30dB, but set for 20dB
frequencic RANGE Lin	Limited to $300 \mathrm{~Hz}-3 \mathrm{k}$ (-3 dB) (see Fig. 2c)
SIGNALTO NOISE RATIO OUTPUT	60dib with full compression mic. gain mid-way

and adjust the mic. gain for 1 V pk-to-pk. Secondly, adjust the meter preset for full scale reading. Set the sig. gen. for $10 \mathrm{mV}, 3 \mathrm{KHz}$. Switch on, and the trace Should increase to $3 V \mathrm{pk}$-to-pk (+ +10 dB). tone control clockwise. The trace should increase to 2 V pk-to-pk. Rotate the tone control anticlockwise and the trace should reduce to 0.5 V pk-to-pk 300 Hz and repeat; the control should now produce opposite results.
Set the sig. gen. to 1 kHz , meter f.s.d. (as in the first part of the procedure) and monitor TP4. Turn the clipper drive to
maximum and adjust R_{fs} for 35 mV pk-
continued on page 62

UHJ surround sound agreement

Agreement has just been reached betwee
Duane Cooper, of the University of Illinois Duane Cooper, of the University of Illinois
Nippon Columbia Co. of Tokyo, and the National Research Development Corpora tion for patent and licensing rights in sur-
round sound technology. The assignment of Duane Cooper's portfolio of surround sound patents and patent applications to the NRDC, follows the informal statemen reported in our sune e 197 issue (page 46) that
agreement in principle" had been made between NRDC and Nippon Columbia, to provide a kernel surround sound system,
combining the attributes of the NRDC ambisonic psychoacoustic research with that of D-4 technology. A US patent interference was partly responsible for holding up this The pooling of interests may ease accept nce of ambisonic technology by the recor ding industry, which still remembers public resistance to the quadraphonic approach
One UK record company, Nimbus Records of Monmouth, has already issued 16 twochannel UHJ recordings, and according to
he co-director Gerald Reynolds a further 12 he co-director Gerald Reynolds a further 12

Phone cable between

UK and USA gets

go-ahead

A new telephone cable between Britain and elephone cable links by more than 50\%, has seen given international go-ahead. Having a
capacity of more than 4000 calls at any one ime, the $£ 100$ million undersea link will carry phone calls, computer data and tel
ween Europe, America and Canada.
Throughout the 1970's, the demand for telephone services between Britain and
America has been growing by 15 to 20% per America has been growing by
year and this shows no signs of slowing up
At present, more than 20 million phone calls At present, more than 20 million phone call
are made each year between the two countries and more than half of these go by cable
The new system, which is known as TAT 7 because it is the seventh in a series o telephone cables between Europe and America dating back to 1956, will be
manufactured by the USA, Britain and manufactured by the USA, Britain and
France. It is due to come into service in 1983 and will run some 3,400 nautical miles from
Sennen Cove, Land's End, to Tuckerton New Jersey.
The international agreement was reached
at a conference in Brighton of the British Post at a conference in Brighton of the British Post participating in the project. Although the
cost is being shared equally between Europe cost is being shared equally between Europe
and America, Britain is paying the largest (22\%) share of the European halt the largest 16 other participants partnering Britain in
this half of the project.

Matsushita Electric joins BREMA

Matsushita Electric (UK) Ltd, which is part of Matsushia tronics manufacturer, joined the British
Radio Equipment Manufacturers' Association (BREMA) on July 1. . Brian Reilly, the chairman of National
Panasonic UK and former chairman of the Panasonic UK and former chairman of the
Finance and General Purposes committee of BREMA, described the move as "recognition of the contribution that Matsushita is
making to the British electronics business by making to the British electronics business by its manuacturing presence heree. Brian is
representing Matsushita on the BREMA
council. council.
Matsu Matsushita started making colour televi-
sion sets at : Pentwyn, Cardiff at the end of sion sets at Pentwy, Cardiff at the end of
1976, and now produces Panasonic colour
televisions, music televisions, music centres and Technics
stereo radio tuners in two factories there stereo radio tuners in two factories there.
The company employs 380 people and in addition to substituting imports, generating exports, and introducing new technology,
has pursued a policy of sourcing as many has pursued a policy of sourcing as many
components within Britain as possible. Its colour televisions, for example, have up to
72% of British components by value.

On April 22 an amateur radio station aboard the Queen Mary, which is now a floating restaurant in America, was dedicated to provide public service communications to Long Beach
and Southern California. The ship's original wireless room has been rebuilt and now includes amateur radio equipment in addition to the former radio gear. Volunteer operators, wearing uniforms similar to those worn by the ship's crew years ago are manning the station, call-sign W6RO, daily spreading international goodwill.
and could use its generators to power the station thought that the ship would suffer no damage amateur radio fashion. The organisers have arranged with the Red Cross and the city of Long Beach for messages to be given to local libraries for transmission to the ship by amateurs using
portable battery-operated transceiver arranged.

tions, for two, three or four channels, whose
basic two channel signals fall within the HJ
Gerzon/Calrec sound-field microphone Actually, the agreement covers only equip
ment licensing - recordings are a separate issue - but it's ironic that Nippon Columbi Co. were just beaten to the post by JVC fo
the Japanese rights to the Nimbus materia (though only in two-channel form)! But it will probably take acceptance in
ternationally by such bodies as the FCC and EBU before major record companies commit themselves again. The tragic death recently of Ben Bauer may mean that the rival USQ
multichannel proposals, scheduled for pre sensation at the last AES convention, will lose momentum and thus consolidate a swing
in UHJs favour - in the most unfavourable in UHJs favour - in the most unfavourab
way possible. - System UHJ is more than the tactica
compromise announced jointly by the BBC compromise announced jointly by the BBC
and NRDC (page 77, December 1997 issue) as and NRDC (page 77, December 197
HJ, which the BBC optimized with a bias toward mono compatability. System UHJ is a
universal encoding standard for all direcuniversal encoding standard for alls, whose
tions, for two, three or four channels. tolerance zones. \square

Support rallied for women's rights in industry

In industry, normal business pressures tend to take priority over such things as equal opportunities proms into men's and women's
segregation of jobs segregation of jobs into men's and worm to a
work is still widespread, according to a survey by the Equal Opportunities Commission (EOC). However, it seems that Britain in munities Commission (ECC) reported recently on how its nine (now ten) membe equal policy for mpen and women (EEC background reports ISEC/B53/78 and ISEC/B8/ 9), it found that in all of the countrie The aim of the EOC survey, carried out during 1977 and early 1978, was to enable the pportunities Committee to identify prodevelopment of good practices. Many com panies regarded positive action towards qual opportunities as unnecessary and survey report. Only a quarter had actually written out equal opportunity policies and sss than half had analysed their workforce by sex. Although flexible working hours were workers, part-time work and child care faci ies were not widespread.

European consumer electronic

manufacturers association formed

With the election of the European Parlia Associations of European Consumer Elec ronic Manufacturers (of which BREMA is member) have created, fom amongst heciations, a European Association of Consumer Electronic Manufacturer EACEM).
Today, the domestic consumer electronic
ndustries are mainly concerned with the ndustries are mainly concerned with the
assembly of equipments. widely used fo entertainment and cultural purposes. In the future, however, they will also be concerned
with processes, materials, equipment and systems which use domestic tv receivers a home terminals for the display of data. To
achieve this according to the EACEM. the achieve this, according to the EACEM,
industries myst have "strong links, both research and development, with their allie electronics sectors in telecommunications,
information services and, above all, in th components industry,"
components industry.
Within the EACEM there is a Council which has the duty to nominate a Chairm last no more than three years, and a Secre tariat, staffed by the national profession organisation belonging to the country fro
which the EACEM Chairman comes. There is also a Technical Advisory Committee, which is qualified in standardization and safety an works with the appropriate national an
international organisations. An Economic nternational organisations. An Econom the job of establishing, in consultation with th professional associations of the EACEM and
their national and international administra their national and international administra-
tions, an annual document recording the

The EOC consider that an analysis of possibilities for part-time work, including
costings, should be carried out, and that it is costings, should be carried out, and that it is
vital that firms take positive action to move away from job segregation. The commissioner responsible for the
ECC's equal pay policy for men and women, ECC's equal pay poilcy for men and worne in-
Mr Vredling, decided in March to start one
find fringement proceedings under the Rome Treaty against those member states whose
national legislation fell short of the ECC directives on equal pay, equal access to employment, training and promotion. The Commission then sent letters to the govern-
ments asking them to submit their comments on the infringements within 60 days, and it is giving them a specified period of time to Court Justice.
Letters have been sent to Germany, Belgium, Denmark, France, Luxembourg, the
Netherlands and the United Kingdom. The Netherlands and the United Kingdom. The
ECC consider that the UK's legislation does not conform because 'the concept of work of equivalent value seems to be given a restric-
tive interpretation of the Equal Pay Act". A tive interpretation of the Equal Pay Act". A
worker may only request equal pay for equiworker may only request equal pay for equi-
valent work if a job evaluation scheme is not valent work if a job evaluation sche
practised in the firm in which he or she is
employed. An ECC report says that the
has maintained that th Equal Pay Act of 1970 and the Sex DisECC legislation against sex discriminatio but there is a strong body of opinion that where only 25% of firms operate job evaluation schemes, British law has loopholes
final results of market data on the production record details of the imports and exports o these equipments to the EEC member At its inaugural meeting in April, the EACEM elected for two years, the Chairman Director of Thomas Brandt, Director Genera of Groupe Grand Public de Cette Societe since 1973 and past president of Association members) and the Vice Chairman, Doctor R . Koeberle, Director of the SABA Society an Vice President of the Fachverband
haltungselektronik im ZVEI, the Germa haltungselektronik im National Association member. During thes two years the Secretariat will be established

Marconi to make

ty monitors

Marconi Communications Systems Ltd has agreed with EMI to take over manufacture of monitors previously made by EMI/Prowest. This means that the company, who will ser making these products and and their Chermsord factory in the near future, will then be
able to ofer a complete package of studio equipment from its own manufacture. The range of products, which is wel nown throughout the broadcasting worlity and reliability, includes 35 cm and 50 cm colour units and a series of black-and-white monitors.
whiches to an evaluation of 'equivalent it comes to an evaluation of equivalent
values'. This body believes that the roader
ECC legislation ensures a fairer system.

Product liability

 cloud has silver liningDr. D. W. Budworth, deputy director of company affairs at the Confederation of
British Industry (CBI) addressing the conference on "prospective laws on liability for Electrical Engineers in London on May 30, said that manufacturers should capitalize on product liability legislation (see p47, Jan.
1979 issue) by making safer products and thus winning a larger market share. He thought that if this approach was taken some
good might come out of it for both industry and society.
Dr Budw Economic Comm criticized the European drive for product liabily whom the main coming, and suggested that their current proposals were commercially unacceptable, grossly unfair, and incomplete. The EEC
draft convention, according to an IEE draft convention, according to an is liable even if the product could not have been seen to be defective with the science and technology available at the time of manufacture. "The CBI feels this opens up
the manufacturer to being held liable for unknowable defects", said Dr Budworth "this is taking things too far. Nothing is appreciate this fact." He then warned that liability was limited by the resources at the manuacturers ispos a limit to the insurance cover available, and at present this was $£ 250,000$, so industry had a limited capacity to pay. Howyears because it was impossible to ge domestic legislation in less than two years, and it would probably take longer than that.
Giving the consumers' case, Mauric Giving the consumers' case, Maurice
Healey of the National Consumer Council, Healey of the National Consumer Counci,
and a former editor of Which said that it was
the NCC's belief that the NCC's belief that liability should res with the manufacturer of the goods because
he was in the best position to ensure the quality and safety of the product. The thought it right that the added cost of insu-
rance be borne by consumers, but that the rance be borne by consumers, but that en
costs would be small. For the average en gineering company, costs would be doubled if the current proposals went ahead, he said,
but since current insurance premiums costed but since current insurance premiums costed
only 0.1% of turnover this would
tise to only 0.2 . rise to only 0.2%.$-$

 . \square

Work on tv subtitling for

Ariel VI (UK-6)

 the deaf continues
Abstract

In the October 1978 issue of Wireless World we described the work being carried out by the IBA the IBA into tv subtitling for the deaf. D Alan Newell, of the Department of Elec tronics at Southampton University is con- ducting research into the possibility of using ducting research into the possibility of using teletext for this purpose and is now working under a three-year contract between the IBA and the university. Robert Baker who is a and the university. Robert Baker, who is a research fellow assisting Dr Newell, recently sent a report about their work to the Royal National Institute for the Nation his ritute for the Deaf. the tv decoorters needed to receive pages of teletext weres still expensive, they pades of good reason to believe that prices whey reason to believe that prices would soon fall. They hoped that research would contribut. They hoped that research would contribute to a greater availability of teletext decoders by increasing by increasing public awareness of the many possibilities of teletext in general and of the value of subtitles for the deaf in particular Their research was being carried out along hrree main lines. Firstly, they were sending out questionnaires to determine what grammes deaf and hard of hearing prowatch on television - that is, the most popular ones and why. They wanted this information because they hoped to be able to show a few real-life tv broadcasts with sub- titles in the near future, and they wanted to be sure that they appeared on programmes that deaf people watched already. In addition, they wished to know which pro- grammes would benefit most grammes subtites. The research team's second line of approach was to make careful and detailed studies of the best way to present subtitles on the tv screen. To determine, for example, which part of the screen they should appean what kind of background they should have how many words that should be shown on hhould stick to short uncomplicated the sences, or show every word that was said. Mr Baker then pointed out that the viewer should be able to read the necessary inforshoulion bable to read the necessary infor mation and still see the action on the screen. The third line of research was to inves tigate the more subtle aspects of tv subtit nd noises or bow to indicate offstage voice and noises or how to keep the subtitle c a football during soccer presentations.

MPs form committee for personal radio service

An all-party committee of MPs was set up
during June to put pressure on the govern
ment to introduce a personal radi service ment to introduce a personal radio service.
The chairman of the committee Tory Patrick Wall, said that they would not use 7 MHz but would choose an operating frequency which would not interfere with eurs. The committee now intends to hold another meeting this month in the House of Secretary, william Whitelaw.
The last words from the Commons apparently came from Mr Timothy Raison
the Home Office minister the Home Office minister in charge of radio
regulation, who said that the arguments in regulation, who said that the arguments in
favour of c.b. have some merit but its introduction would bring regulatory, social economic and administrative problems in its
train - very similar to the last governments standard reply to pro-CBers (see p71, Sept.
1978 issue) 1978 issue).
Mr Wall's views seem to follow very
closely those of the Citizen's Band Assorin Closely those of the Citizen's Band Associa-
tion president, James Bryant, who is un-
doubtedly the most doubtedly the most prominent pro-CBer to
date. Mr Bryant's views (see p65, April 1979 date. Mr Bryant's views (see p65, April 1979
issue), be they right become quite popular, due wrong, have now
efforts. James efforts. James Bryant, however, does not
agree with Mr Wall's suggen agree with Mr wall's suggestion that it will
take one or two years to legalise radio service. In his opinion it is not
necessary to change necessary to change the law; all that is
needed he says, is a few minor changes Wireless Telegraphy Act and an agreement with the Post Office to a general breach in its
mond Although Mr Wall was not prepared to say
what frequency band the committee would be recommending, it is thought that they will the NEC report published in the May/June 1978 issue of the National Electronics Review (see p38, August 1978 issue).
Labour MP and tv pers Mitchell is the vice chairman of the committee and the secretary is Tory MP John
Butcher

- The early morning raids which were carried out by police and government
officials on the homes of people illegally officials on the homes of people illegally
operating personal radios in Birmingham,
UK, seem UK, seem to have given some people the idea that the city is a national centre for these law
breakers. We do not think so. Birmingham only one of many large cities which has, according to me he Citizen's Band Association,
thousands of illegal thousands of
1979 Thsue).
The last go
government too havt, and it seems the new very hard on offenders - have do clamp down thing far more serious - and if a nucleuse these offenders are discovered then raids of this kind are only to be expected. Since the caught in the act, the raid must take ple be when the offence is being committed
when whether it be early morning or not.
If the authorities were If the authorities were as keen to stop
muggers and rapists (and we were muggers and rapists (and we were not the
first to make this comparison, see "C.B. anmmunications likened to robbery, plunder and rape, p47, July 1978 issue) peopple would
be a lot safer on the streets - especially first
thing in the thing in the morning.
now in earth orbit
Britain's scientific satellite, Ariel VI, which
went under the pre-rbit successfully launcheorbit name UK-6, was June 3 (at 23.26 GMT) from the National (NASA) Flight Ceroce Administration (NASA) Flight Centre at Wallops Island,
Virginia. The satellite was financed by the Science Research Council and was designed built and tested by Marconi Space and De-
fence Systems Ltd. British Aerospace fence Systems Ltd. British Aerospace
Dynamics Group at Bristol, under contract to Marconi Space and Defence systems Ltd,
designed and built designed and built the satellite's structure including the body, deployable booms and
outer sphere of one of the experiments. mechanical ground of support equipment wa also designed and built at Bristol.
The satellite's The satellite's purpose is to carry ou
studies of the charge and energy cosmic radiation, which can give an insigh into the conditions of the source and the processes of nucleo-synthesis that have oc-
infod in high energy objects. This sort of curred in high energy objects. This sort of
information is important to scientists be-
cause cause cosmic rays are the only sample that
they can get of matter which they can get of matter which lies outside the
solar system. Information mission should provide a better understan-
ding of astron the ding of astrophysical phenomena that in-
volve large energy densities and their Volve large energy densities and their high-
energy products, such as quasars radio galaxies, supernovae and pulsars.
Ariel VI carries thre Ariel VI carries three primary science
instruments: a cosmic ray detector for instruments: a cosmic ray detector, for Bris-
tol University, and two X-ray experiments, one for Leicester University
and and the other for Birmingham University and
the University Cor the University College of London's Mullard twace Sccience Laboratory. Also on board are
Aircraft Establ experiments for the Royal Aircraft Establishment at Farnborough,
which will investigate the parforman Which will investigate the performance of
new types of solar cells and of metal oxide semiconductor devices in a space environ-

Girl technician

 engineer of the yearThe second competition by the Caroline
Haslett Memorial Trust and the IEETE to find the Girl Technician Engineer IEETE is to be held this year. A prize of $£ 250$ will go to the girl who will have successfully under
taken the necessary technical education training, nend have proved helself capable of
holding a respont and holding a responsible job. The award spon-
sors hope that she will, by her sors hope that she will, by her example, and elacetronic engineering profession. The IEETE gives the closing date for nossionations as September 19, and they say that the
winner will be announced in November.

No radio without displacement current

An aid to understanding Maxwell's equations for wave propagation

by D. A. Bell, M.A., B.Sc., Ph.D., F.Inst.P., F.I.E.E.

"Faraday's conception of electric and Faraday's conception of electric and
magnetic force and their interrelations, expressed in terms of his lines of force, were fundamental. In terms of them James Clerk Maxwell developed the theories of electromagnetic
phenomena."
Encyclopedia Britannica

BECAUSE displacement current forms a vital link in Maxwell's equations for wave propagation in empty space, text books often give the impression that as a kind of mathematical trick to make his equations work. This is not so. In his two-volume Electricity and Magnetism, displacement current appears first on p. 65 in volume 1 , in the part dealing with Faraday's work on lines of force. It is easy enough to think of electric and magnetic fields as stresses in a tangible medium such as insulating material or iron, but what happens when the
material medium is replaced by a vacuum, leaving the fields 'hanging in space'? We no longer believe in an all-pervading ether, yet experience has long shown that light from the stars travels freely through space which is practically empty and now radio wavicle
travel back to the earth from a vehicle which is near Jupiter. So it seems that we must accept that electromagnetic fields can exist in empty space.
But has something been slipped electric and magnetic fields come to be replaced by electromagnetic fields? Of course it was Maxwell who transformed "electricity and magnetism" into "electromagnetism" by setting out four
equations which link together to form a closed cycle of electric field - magnetic field - electric field . . . and so on, continuing for ever as radiation if no conductors get in the way. Looked at most basic factor is electric charge which usually is associated with a number of electrons (negative charge) or of protons (positive charge). A charge in steady motion constitutes a
current, which produces a steady magnetic field. With varying motion a varying current produces a varying magnetic field which acts on an electric charge like an electric field. This looks

Fig. 2. (a) Water flowing outward from a spring, to illustrate a vector with divergence but no curl. No work is done in traversing a closed path. (b) Rive
with faster flow in the middle to with faster flow in the middle
illustrate curl. Work is done in traversing a closed path which encloses an area.
like a closed cycle, but it involves elec tric charge so it will not do for in empty space where there is no charge.
Maxwell was able to solve this problem because he was at home with the
mathematics of vectors (which we will mathematics of vectors (litle later) and he used the idea of 'displacement current to show how electromagnetic wave could be propagated through empty in his famous equations, he did not invent it for this purpose but rather to rationalise the circuit behaviour of a capacitor. If the capacitor has a material dielectric the picture is very simple, Fig. the right-hand plate, all polarisable molecules have their negative parts pulled to the right and positive parts repelled to the left. Maxwell pointed out
that this very definitely constitutes an that this very definitely constituves an
electric current since it is a movement of charges, although it is not a steady flow of charges, as in a conductor or in an electron beam, but a displacement of charges from their normal positions, so
it is called a displacement current. Note it is called a displacement current. Note
that as the charges are moved against that as the charges are moved ant of the charges is proportional to the electric field between the capacitor plates, and
therefore to the applied potential; but therefore to the applied potential, the displacement current is proportioBut now take away the dielectric, as for example in a vacuum capacitor. There are no polarisable molecules to produce a tangible displacement current, but as far as any circuit properties
are concerned there is no different kind are capacitance (apart from dielectric loss and breakdown strength). So displacement current is still said to flow, in proportion to the rate of change of electric field. But with nothing to dis-
place, is this displacement current real? The test is whether it produces a magnetic field, and the existence of electromagnetic waves in empty space is proof that it does.*
*The need for displacement current in the dielectric (possibly vacuum) of a capacitor in
order to satisfy the 12 ws of static magnetic fields is given in Ramo, Whinnery and Van Duzer, Fields and Waves in Comm
Electronics, Wiley (1965), pp. 232-3.

$$
\operatorname{div} B=0
$$ space the world would be cold and dark

$$
\operatorname{curl} \mathrm{B}=\mu \epsilon \frac{\mathrm{d} E}{\mathrm{~d} t}
$$ from the no radiation could reach us To understand why there are four of the properties of vectors to see why we need two equations concerned with the electric field and two for the magnetic field. Most of the mathematics of vectors was worked out in the first place for velocity of flow as the important vectors, so we need not hesitate to use hydraulic models to illustrate the properties of vectors, and in particular

divergence and curl. Divergence mean
out" and is an attribute of a vector field around a source-water flow around a spring or electric field around a charge. Imagine a pond having a spring at its
centre so that water flows outwards it all directions, as indicated by the arrows in Fig. 2(a). Then a floating object may be moved along the closed path A , towards the spring and back, or along or round by other closed path, withg, any net work being done.
Next consider a river which flows
faster in the middle aster in the middle than near the banks, as suggested by the lengths of the by water from point A to point travel back, the clever oarsman will row D and mid-stream so as to get the help of the current from B to C but will return from Durrent is less. The bank where the vector field (the flow of done by the case) is proportional to the area en osed so long as the flow pattern is uniform within the area, and the coefdone' to 'area enclosed' in relate 'work vector ${ }^{\dagger}$
Now in general a vector may have both divergence (abbreviated as div) and curl so that two equations are needed to specify a vector fully; and so
with two vectors, electric and Maxwell needed four equations. A complication is that it is common to split each of the two vectors into 'force' motive force H (, as with magnetomotive force H (oersted or ampere/ tesla). But for a linear isotropic medium (which empty space certainly is) the

More exactly, the line integral around tr

 ral ofer the area enclosed of the curl of the.relevant vector.

Fig. 3. System of axes for plane wave
 propagating in the z direction

relationship within each pair is simply multiplication by a constant, so we will simplify the equations by using only E permeability constant ϵ and magnetic is defined by the The electric vector
$\operatorname{div} E=\rho$
$\operatorname{curl} E=-\frac{d B}{\mathrm{~d} t}$
and the magnetic vector by
$\operatorname{div} B=0$
$\operatorname{curl} B=\mu\left(J+\varepsilon \frac{\mathrm{dE}}{\mathrm{d} t}\right)$
(2)

Here ρ is the charge density and J the density of current due to movement of empty space. So which are zero in
-

Since curl corresponds to a particular kind of space variation of the vecto compare Fig. 2(b)), the second and pace variation of E depens say that the variation of B and the space variation of B depends on the time variation of E Given expertise in the mathematical manipulation of vector differentiations, is possible to treat these two as a pair solved for E and B. (The simplest case avoiding the use of vectors, is solved in the Appendix.) Since E and B vary both in space and time it should not be surprising that the solutions are propa-
gating waves, with a velocity of propagation equal to $1 / \sqrt{ }(\mu \epsilon)$. But this result is only obtained through the existence of displacement current, without which the right-hand side of the fourth equa-
tion would be zero and neither E nor B could propagate: no radio waves without displacement current.

Appendix: Solution of Maxwell's equations for plane waves

The vector equations (3) are true for any
shape of wave (plane, cylindrical, spherica) shape of wave (plane, cylindrical, spherical)
depending on the boundary condition which in practice means the way in which the waves are launched. Solution of the
vector equation vector equations shows that for any shape
the vectors E and B the to each other and to the direction of propagation. Having established this, one can take as a special case a plane wave propagating in
the z direction with E in the z direction with E in the x direction and B
in the y direction; and if the wave is of infinite extent in the x-y plane, the only space varia-
tion is in the z direter tions from (3) can then be reduced to simatifferential equations:

$$
\frac{\mathrm{d} E}{\mathrm{~d} z}=-\frac{\mathrm{dB}}{\mathrm{~d} t}
$$

$\frac{\mathrm{d} B}{\mathrm{~d} z}=\mu \epsilon \frac{\mathrm{d} E}{\mathrm{~d} t}$
$E=A \sin [\omega(t-c z)+\phi]$ where the velocity of propagation (iii) ϕ depends ϕ depends on the placing of the origin of the by eliminating E betweeen (i) and (ii) . for B still have to satisfy the individual equations, which need a particular ratio between E and B. However, it is usual to express this in
terms of $H=B / \mu$ and it is then found to be

$$
\frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}}
$$

This ratio, which has the value 120π fo mpty space, is often called the intrinsi
mpedance of the medium, by analogy with he characteristic medium, by analogy with
ransmission line It is ace $V(L / C)$ of transmission line. It is a characteristic of the medium in which the waves are propagated,
and independent of the shape of the waves.

Professor David Bell, who joined the University Electronic Engineering, retired in Septembe 1978. From 1949 to 1961 he was Reader in
Electromagnetism in Electromagnetism in the electrical engineering
department of Birmingham University, and thereatter till 1965 he was the University, and
British Research Lor British Research Laboratory. He has con-
tributed widely to the tributed widely to the learned journals and has
been writing for Wireless World throughout his

This is the differential equation of a sinu-
soidal propagating wave of the general form

Converting between analogue and digital quantities

More analogue-to-digital conversion techniques
by G. B. Clayton, B.Sc., Liverpool Polytechnic

The a.-to-d. conversion techniques described in the previous sections give a digital output which depends upon
value of the analogue input signal existing at some precise instant in time, and their output is thus affected by the presence of noise on the analogue input signal. A variety of conversion techniques has been developed in which the digital
output depends upon the integral or average value of the analogue input signal during some prescribed time interval.
INTEGRATING TECHNIQUES have the advantage of giving repeatable results even in the presence of high signal. The effect is averaged out, provided that the noise frequencies present are such that $1 / f_{\mathrm{n}}<T$, where T is the integration period.
Monolithic i.c. devices suitable for the implementation of integrating a.-to-d.
converters are available from several manufacturers; they are comparatively inexpensive yet, nevertheless, can provide very accurate conversion. Their main disadvantage when compared
with the techniques discussed previously is their much longer conversion time.
Presently-available integrating converters fall into two categories; those which employ the so-called dual-slope quantized feedback method to perform a conversion. The dual-slope technique is the simpler in concept and implementation, and has been the preferred integrating conversion method feedback converters are comparative newcomers, and in some applications provide several advantages over the older, dual-slope techniques.

Dual-slope conversion

The operating principles involved in a basic dual-slope conversion may be plified circuit schematic in Fig. 22. It is a two-stage process; in the first stage, an analogue integrator, whose output has analogue signal which is to be converted connected as its input signal. The input signal is integrated for a fixed time interval $T_{\text {i }}$ and if it remains constant grator is a linear ramp.

The second stage of the process com-
mences at the end of the time interval T_{i}, which instant the control logic dis connects a reference voltage in its place as the integrator input. The reference oltage polarity is opposite to that of the analogue input signal, and makes comparator being used to sense when it reaches zero. The time taken $\left(T_{r}\right)$ for integration of the reference to bring the output back to zero is directly proporional to the average value of the anaThe time interval T_{i} is the time during which a fixed number of clock pulses
are counted $T_{i}=N_{i} T_{c}$, where T_{c} is the
clock period and N_{i} is normally taken as clock period and N_{i} is normally taken as to fill and recycle the counter. The time interval T_{r} is measured in terms of the number of clock pulses counted in the time $T_{r}=N_{x} T_{c}$. During the 'integrate tor changes by an amount:

$$
V=\frac{1}{C R} \int_{0}^{T_{\mathrm{i}}} V_{\mathrm{in}} \mathrm{~d} t
$$

During the integrate-reference stag

Fig. 22. Simplified circuit of dual-slope converter

46
to zero
$\frac{1}{C R} \int_{0}^{T_{\mathrm{i}}} V_{\mathrm{in}} \mathrm{d} t-\frac{1}{C R} \int_{0}^{T_{\mathrm{r}}} V_{\text {ref }} \cdot \mathrm{d} t=0$.
Substituting $T_{\mathrm{i}}=N_{\mathrm{i}} T_{\mathrm{c}}$, and $T_{\mathrm{r}}=N_{\mathrm{x}} T_{\mathrm{c}}$ and re-arranging give
$N_{\mathrm{x}}=\frac{N_{\mathrm{i}}}{V_{\text {ref }}} \times \frac{\int_{0}^{\mathrm{N}_{\mathrm{i}} I_{\mathrm{c}}} V_{\mathrm{in}} \mathrm{d} t}{N_{\mathrm{i}} T_{\mathrm{c}}}$
or

$$
\begin{equation*}
N_{\mathrm{x}}=\frac{N_{\mathrm{i}}}{V_{\text {ref }}} \cdot V_{\text {in }} \tag{14}
\end{equation*}
$$

Where $V_{\text {in }}$ is the average value of the analogue input signal during the signal-integrate' stage of the converion. The count N_{x} is recorded; it represents a digitally-encoded form of The beauty of the echnique is that the theoretical accu-

Fig. 23. Using ICL7106 to make simple dp.m

Fig. 24. Waveforms from circuit of Fig. 23.

WIRELESS WORLD, AUGUST 197 automatic polarity selection. Automatic zeroing involves an extra stage to the
conversion cycle in which offsets in the analogue circuitry are automatically balanced out. The automatic polarity
function allows both positive and negative analogue input signals to be converted, and involves the switching in of a reference voltage polarity pposite to that of the analogue inpu signal.
Integrated circuit devices which stems as dual-ramp converter subMC1505/MC available (e.g. Motorola MC1505/MC14435, Intersil 8052/T101.) device digital circuitry in ind in one More recently single-chip another converters have appeared on the market. The ICL 7106 (or 7107) is a device which contains all the active circuitry required for a $31 / 2$ digit d.p.m. with vice requires the addition of a display, four resistors, four capacitors and an input filter (if required) to make a working instrument. ${ }^{7}$ The basic circuit diagram of liquid-crystal display d.p.m. The Intersil d.p.m. evaluation kit (ICL7106 EV/KIT) contains the p.c. board, converter chip, display and passive components, and gives a practical and convenient way of looking into the it allows one to construct a working high performance instrument. Test points are available at which signals can waveformitored. Fig. 24 shows the integrator (pin 27) for two valugue analogue input signal. Note the fixed integrate-signal' time period and the onstant-slope but varying time period conversion integrate-reference' stage of the the use of measurement require oscilloscope probe so that loading hould not interfere with the correct ircuit operation.

Quantized-feedback conversion

The quantized-feedback and dual-slope methods for a.-to-d. conversion are somewhat similar, in that both systems Inploy a charge-balancing technique. supplied by the analogue input signal during the fixed 'integrate-signal' time period is balanced by an equal and opposite charge supplied by the reference during the variable 'count' sion occur as separate phases of the conversion process. However, in the quantized feedback-method, they occur simultaneously during a single fixed Fig. 25 is a simplifie
illustrating the functional circuit diagram underlying the quantized-feedback method. During conversion the sum of a and pulses of a reference current $I_{\text {in }} / R_{\text {in }}$ $V_{\text {ref }} / R_{\text {ref }}$ is integrated for a fixed numb

WIRELESS WORLD. AUGUST 1979 i clock periods. The reference current is of opposite polarity to the input cur-
rent and is larger than the input current $I_{\text {ref }}=2 I_{\text {inf(s. })}$. It is switched in for exactly $I_{\text {ref }}=2$ inf(f.s.). frequently enough to maintain the integrator output near zero.
The comparator in the system senses when the output of the integrator exsignals the control logic to perform the clock switching of the referencecurrent charge increments. The system maintains a continuous charge balancing between the charge supplied by $I_{\text {in }}$ The total number of $I_{\text {ref }}$ pulses needed to maintain the balance during the fixed conversion time is counted, the count representing the digitally-coded value appearing at the integrator output in a practical quantized feedback converter are shown in Figs. 27 and 28.
An expression for the conversion relationship in a quantized-feedback converter is readily derived from
condition of zero net charge transfer. Letting T_{c} represent the clock period the magnitude of the $I_{\text {ref }}$ charge incre ments are
$=\int_{0}^{T_{\mathrm{c}}} I_{\mathrm{ref}} \cdot \mathrm{dt}=\frac{V_{\mathrm{ref}}}{R_{\mathrm{ref}}} . T_{\mathrm{c}}$.
The charge supplied by the continuous.

Fig. 25. Simplified quantized-feedback converter.
input current during the fixed conver- $\quad Q=\frac{N . T_{\mathrm{c}}}{R_{\text {in }}} \cdot V_{\text {in }}$
sion time period T_{i} is
(16) where $V_{\text {in }}$ is the average value of the nput signal during the conversion period. Q is balanced by N_{x} charge increments of $I_{\text {ref }}$. Thus: $N_{x} \cdot q=Q$.
Substitution of values from Eq. 15 and Eq. 17 gives
$N_{\mathrm{x}}=\frac{R_{\text {ref }}}{R_{\text {in }} \cdot V_{\text {ref }}} \cdot N \cdot V_{\text {in }}$ N. $V_{\text {in }}$

The quantized-feedback technique is insensitive to both long and short term

(15)
$Q=\int_{0}^{T_{\mathrm{i}}} \frac{V_{\text {in }}}{R_{\text {in }}} . d$
where $T_{\mathrm{i}}=N . T_{\mathrm{c}}$ (N is a fixed number).
Eq. (16) may be written as
$Q=N \cdot T_{c} \int_{0}^{N T_{c}} \frac{V_{\text {in }}}{N \cdot T_{c} R_{\text {in }}} \cdot d t$,
$Q=N$
or
or

Fig. 26. Circuit using Teledyne 8750 quantized-feedback converter.
chift in clock frequency since any equally the charge supplied by the input signal and the charge supplied by the
reference. The fixed conversin reference. The fixed conversion time of the technique is valuable if the con-
verter is to be used in a data acquisition system, since it allows the converter to e synchronized to the operation of the complete system.
verters are available from several manufacturers. They come as two-chip sets (e.g. Intersil LD111/110) with the analogue and digital circuitry sewarappearing on the market. However, a design constraint with all single-chip converters is the digital noise which inevitably crops up during achievable sensitivity The Teledyne Sem
ries of converters anconductor 8700 which employ the are c.m.o.s. devices technique, requiring only th-feedback of a few external passive componention power supplies and reference. A circuit is shown in Fig. 26. The 8700 series of converters can be interfaced with microprocessor systems.
A simple test of the nature of the
quantized-feedback mode of operation is to examine the waveform appearing at the output of the integrator (pin 15 of the device in Fig. 26). Typical integrator output waveforms for different values

vertical sensitivity $0.5 V /{ }^{2} / 2 \mathrm{~V}$
Horizontal sensitivity O.2
Fig. 27. Waveforms from circuit of Fig
26 at various levels of shows working levels of $\bar{I}_{\text {in }}$. Trace at (a) $\stackrel{s}{\text { show. }}$

ig. 28. Version of Fig. 27 with Iir almost at full scale.

WIRELESS WORLD. AUGUST 1979 of the analogue input signal are shown and only $5 I_{\text {ref }}$ charge pulses are required during the conversion time in order to maintain charge balancing. Clock
switching of the switching of the $I_{\text {ref }}$ pulses is allowed
when the integrator output exceeds when the integrator output exceeds
approximately 1 volt. In the second trace (Fig. 27(b)), $I_{\text {in }}$ is increased with a consequent increase in slope of the integrator ramp and a greater number of $I_{\text {ref }}$ charge pulses required to
maintain the charge balance. In Fig. 28 , $I_{\text {in }}$ has been increased to a value approaching full scale: $:\left(I_{\text {in }} \geqslant I_{\text {ree }} / 2\right.$ and the time scale has been expanded so that the clock switching of the $I_{\text {ref }}$ pulses can be clearly seen. Note that at times
during the conversion the larger values of. $I_{\text {in }}$ cause the integrator output to appreciably exceed the comparator reference level before the next clocked integratref integrator output.

References

6. Fullagan D. and Dufort M. "Low-cos digital panel meter designs". Intersil Inc. Application note.
7. "Digital panel
8. "Digital panel meter experiments for the hobbyis". Intersil Inc. Application note.
9. Guzeman D. "Interfacing the 8700 A/D Converter with the $8080 \mu \mathrm{P}$ System" Teledyne Semiconductor application Notes.
August 1976.

Literature Received

Wallchart from Cambion, showing a range of printed-board accessories-sockets, links,
handes, etc. Copies available from Cambion Electronic Products Ltd, Castleton, Nr. Shef-
field $\$ 302 \mathrm{WR}$.
B and W Loudspeakers have printed in oooklet form the paper read by G. J. Adams 1979. It describes the design objectives and methods of achieving them, with results of tests. Obtainable from Meadow Road, Wor

Programmable electromagnetic/radio requency interference data collection sysem described is a leaflet from Ailtech UK, Berks. House, High Street, Crowthorne
Sound Verdict 11, published by L. Borough of Camden, is index to reviews and articles on magazines. Compiled by Libraries and Arts epartment, L. L. Borough of Carmes and Holborn Cus

Leaflet from Pye TVT provides basic details and performance figures of LDM 3001 digital
noise reducer for television noise reducer for television broadcasting
Reduces noise from cameras film tape transmission path. Pye TVTLtd, P.O. Box or Coldhams Lane, Cambridge CB1 3JU. WW 403

Catalogue, giving full details of loudspeaker including componebinets and accessories designs, available from Wilmslow Audio Ltd, Swan Works, Bank Square, Wilmslow, Nat 15 p
Booklet on the choice and use of silicon photodiodes, with data on many types, is Centronic House King Hentical Systems Ltd Centronic House, King Henry's Drive, New
Addington, Croydon CR9 0BG.
WW 404
Technical Note 7, from TCI, describes a new approach to the design of wide-band aerials culminating in the design of the TCI Mode 540. Leaflet obtainable from Technology for
Communications International Communications International, 1625 Stierlin USA. WW 405
Catalogue of safety equipment for industrial use is available from Safety Equipment Centres, 53 Elm Road, New Malden, Surrey KT3
3 HB .

Illustrated catalogue of complete rane of radar equipment and services produced by
Marconi Radar Systems Ltd, Writtle Road Marconi Radar Systems Ltd, Writtle Road,
Chelmsford CM1 3BN.
WW 407 Leaflet on multi-channel (up to 30) transient recorder, using the a-to-d converter and
memory technique, to store analogue memory technique, to store analogue
waveforms for subsequent oscilloscope
examination. Copies of leaflet DL 2000 obtainable from Data Laboratories Ltd 28
Wates Way, Mitcham, Surrey CR4 4 HR.

Meta-fim resistors now made by CGS described in leaflet FZ4, from CGS Resistance Company Ltd, Marsh Lane, Gosport Street,
Lymington, Hants SO 4 9YQ. WW 409
TIW Systems describe a 32 m beam waveguide dish aerial for use in Intelsat
terminals in a leaflet obtainable from Tw Systems Inc., 1 1eanet Embarcardero Road, Palo
Alto, CA 94303, USA.

Leaflet on a device to allow playback speed variation of tape cassettes, without distor-
ting the pitch ting the pitch. Speed can be varied from 60% to
Berry Street, San Francisco, CA 94107 , USA.,
WW 411
Technical bulletin from KEF (Vol. 3, No. 4) is on the relationship between loudspeaker enclosure size, power handling, efficiency obtainable from KEF Electronics Ltd Maidstone, Kent ME15 6QP. WW 412
Coaxial r.f. connectors of Transradio types BNC, Series N, TNC, VMP are collected in a
short-form catalogue from Comstock Elec shor-form catalogue from Comstock Elec-
tronics, $4 / 44$ Bowlers Croft, Basildon SS14.
1BR, Essex.
WW 413

Automatic interference remover

Removing interference spikes from f.m. recorded data

WHEN THE DYNAMIC performance of such structures as railway carriages,
buses or aircratt are studied buses or aircraft are studied, various ectrical transducers are attached in critical positions and their output signals
recorded for subsequent analysis recorded for subsequent analysis. used for recording these transducer signals is the multi-track, f.m., magnetic signals is the multi-track, f.m., mag
tape-recorder, which is capable of recording signals with bandwidths from zero to several kilohertz. recording signals may be obtained increasing use is being made of computers with analogue /digital interfaces. A problem often encountered of unwanted electrical interference among the required signals.

IF THE FREQUENCY of the electrical interference is outside the bandwidth of the required signals it can generally be the required signals it can generaly out but, in the presence of certain types of interference, the use of filters can be a considerable embarrass ment, giving rise to greater problems which over-modulate the f.m. channels of the tape-recorder, producing momentary signal drop-out and tape drop-ou itself, are two such types of inter ference. The signal drop-out so pro-
duced is of an amplitude much greater than the full modulation range (f.m.r.) and, depending upon the tape-recording speed and bandwidth of the data channels, can have a duration of several
milliseconds. Such an interference signal passing through a filter produces considerable ringing, possibly lasting for several times longer than the dura tion of the interference itself. It is possible to edit the interference out of the
required data once the data has been required data once the data has been
passed through the analogue-to-digital conversion stage and before any subsequent analysis. However, this can only be done by reconstructing the digita data into analogue form and visually This may result in a considerable increase in the amount of computer time used. Also, if the interference signal has passed through a filter stage, the ringing so produced introduces an elethe interference may be considered as passed. It can therefore only be
removed with any certainty by editing -in both the positive and negative direcremoved with any certainty by editing
out a much larger 'chunk' of the data the positive and negative direc-
tions, so asnot tooverload the a nalogue $\begin{array}{ll}\text { than the duration of the actual inter- } & \begin{array}{l}\text { tions, so asnot tooverload the a nalogue } \\ \text { delay which follows. The analogue de- } \\ \text { lay line introduces a delay of some } 2 \text { to }\end{array} \\ \text { feres. }\end{array}$ ference. From the preceding comments it will be readily appreciated chat some means of automatically removing the un-
wanted interference prior to any filtering stages and before the computer analysis is highly desirable.
The equipment described in this article is able to do this over the band-
width of the type of recorded data encountered by the author.

System operation

The block diagram of the automatic interference remover (AIR) is shown in
Fig. 1. Output signals from note of an f.m. tape-recorder enter the unit via a differential input stage. This is followed by an amplitude-limiting stage which limits the amplitude of the
incoming signals to a level approximately 10% greater than the full modulation range of the tape-recorder, lay line introduces a delay of some 2 to
80 ms , adjustable by varying the frequency of the clock-oscillator. From track-hold circuit with a low-pass filter as an integral part of it. The output from the track/hold circuit is the output of the 'cleaned-up' signal.
In the absence of any interference data signals. When an interference signal occurs it is detected at the moment of its entry into the delay line by either the overload detector or the ference signal has been detected one or both of the two detection circuits will
Fig. 1. Block diagram of the interference remover. At (a) is
the method adopted to prevent the circuit holding on unfiltered noise signals.

50
produce a pulse, which is fed to the
clock-oscillator and digital delay circuit block. This immediately feeds a pulse to the track/hold circuit, switching it into its 'hold' mode. The track/hold circuit
remains in its hold mode for a minimum time (determined by the digital delay) after the last detectable traces of the interference signal have passed through the delay line. At the end of this hold period the track/hold circuit reverts to
its 'tracking' mode. The total duration of the hold period is equal to one analogue delay period plus the detectable period of an interference signal plus a inimum digital delay period. The overload detector detects certain types of interference by virtue of th mat their amplitude exceeds the of interference signal referred to types of interference signal referred to earlier
(tape dropout and signel (tape dropout and signal dropout) are
detected and an output pulse is produced for as long as an overload exists The detector is able to cope with over oading interference of any duration. cross the input and output to the deled line. Because of this it is able to detect amplitude changes in the data signa that exceed a pre-determined value over the delay-line period. By suitable adonly those rates of change in the amplitude of the data signal that can be regarded as outside the required bandwidth will be detected. In this way, interference signals that do not overdifficult to remove by filtering alone are effectively removed. An output pulse is produced by the window comparator only for as long as the window level (the predet.
In the case of both interference detectors, output pulses are produced only for as long as the interference lasts. It is therefore necessary for the hold period least as long as the delay-line perior to ensure that interference signals of a duration less than the delay line period pass right through the delay line before
the track/hold circuit reverts to its tracking mode. It is for this reason tha the digital delay circuit.
An f.m. tape-recorder incorporates low-pass filter as its final playback stage the data signal. In the presence of in terference signals, this filter inevitably produces some ringing. The window this ringing until its the presence of inside the window. Any ritude falls ringing is likely to be removed in the final minimum hold period which, fo this reason, is made adjustable from $1^{1 / 4}$
to $41 / 4$ delay-line periods to $41 / 4$ delay-line periods.
of interference detector will two types types of interference or unwanted signals. For instance, consider a square-shaped pulse of amplitude less
than the f.m.r. and of a duration than one delay-line period plus the minimum hold period. The leading edge of the pulse will be detected by the window comparator, by virtue of its rapid rate of change in amplitude, as it enters the delay line, and again as it least $21 / 4$ delay line periods ($1+$ the min. hold period of not less than $11 / 4$) is thus initiated. However, at the end of the hold period, the trailling edge of the delay line. Both inputs to the window comparator will be at the same amplitude (the height of the pulse) and thus no further indication of the unwanted signal's presence will be given
until the trailing edge enters the delay line. The track/hold circuit therefore reverts to tracking in the middle of the unwanted signal. The period of the delay line and the minimum hold period are both made adjustable to reduce the events to a satisfactory level. Interference signals in general are defined by their short duration relative to the delay-line period and only those which load, are likely to be of any significant duration.
ve ow-amplitude, high-frequency signal that are outside the required bandwidth and not otherwise removed by the in terference detectors. It has been found to the track/hold circuit ras significant effect upon the cleaned-up signal. When the filter was placed immediately after the delay line and before the track/hold circuit, it was interference signal passing through an lasted for much longer than the largest minimum hold period that could reasonably be set. Consequently, a large amount of ringing interference was not removed. Placing the low-pass filter
after the track/hold circuit produced inexplicable little 'blips' in the cleanedup signal that were not present in the untreated, but filtered, signal.
These blips wit
These blips were subsequently found
to be due to the track/hold to be due to the track/hold circuit
sometimes holding on the peak of the high-frequency noise content of the, as yet, unfiltered signal. After some thought, a satisfactory solution was arrived at which is illustrated in Fig. 1
(a). Under normal tracking conditions, (he switches S_{1} and S_{2} are closed and S_{3} is open. The low-pass filter thus precedes the track/hold circuit. When a hold signal is received, switches S_{1} and S_{2} open simultaneously and S_{3} closes.
The track/hold circuit thus holds the output at a level from which the highfrequency noise has been removed. At the same time the low-pass filter is disconnected from the delay line's outfrom entering it, and connected to the output of the track/hold circuit. In spite of the fact that the low-pass filter must introduce a delay into the signal line, resulting in slightly different amplitude
levels between its input and output the resultant output signal is much cleaner using this method than in either of the other two methods. It is important, however, when using a low-pass filter in this manner, that it has zero d.c. offset voltage gain of exactly unity in the band.

Circuit design

Figure 2 shows the circuit diagram of the differential input stage, amplitude operational amps, OPA $_{1}$ and OPA ${ }_{2}$, form the combined differential-input stage and amplitude limiter. Two 2.7V Zener diodes connected back to back, limit the tage plus diode voltage). A 10 kilohm potentiometer connected across the Zener diodes provides a means of adjusting the required amplitude limit OPA_{2} is simply a voltage follower, its
output being fed back to the negative terminal of the input stage to give a closed-loop gain of unity for the the combined input stage and amplitude limiter. The value of the amplitude limit,

WIRELESS WORLD AUGUST 1979

level without altering the unity gain of the two stages. For a full-scale input limit is set to a nominal value of $\pm 1.1 \mathrm{~V}$ The output from the overload detector is normally at a level of about -7.5 V (logical ' 0 ') producing a positive-going
pulse of about 7.5 V (logical ' 1 ') whenever its input voltage exceeds a value of $\pm(7.5 \mathrm{~V} \times 22 \mathrm{k}) /(22 \mathrm{k}+33 \mathrm{k})+V_{\mathrm{d}}$ where V_{d} is the voltage drop across diode D_{1} or D_{2}; i.e. $\pm 3.6 \mathrm{~V}$. When the output from OPA OPceeds $_{1}$ the Zener-
plus-diode voltage of $\pm 3.3 \mathrm{~V}$, it rises rapidly in attempt to provide the necessary feedback voltage for unity gain, quickly exceeding the overload level of $\pm 3.5 \mathrm{~V}$. An output pulse is thus produced from the overload detector.
Because the pulse is used in an either/or configuration with that from the 'window' comparator, D_{3} is placed in its output line
Delay circuit. The most important component of this circuit, shown in Fig. 3 , is the Serial Analogue Delay integrated circuit, the Reticon SAD 1024
which consists of two independent 512 -stage, bucket-brigade delay sections. Sampled levels of the input voltage are passed along from stage to nal clock oscillator, the samples arriving at the output after a time of 512 half-clock periods. The two delay sec-
tions of the device are used in a differential mode for reduced evenharmonic distortion, reduced clocking noise and cancellation of the standing direct output voltage. Each section has an output is provided over each full clock period by adding the signals from the two channels together. The device is capable of operating from a total supply to be compatible with the rest of the to be compatible with the rest of the
circuitry, it is operated from $\pm 7.5 \mathrm{~V}$ rails. The analogue inputs to the device
require a d.c. bias voltage of approximately +6 volts with respect to circuit of Fig. 3 this means a d.c. bias of -1.5 volts with respect to the zero volt line.
Total harmonic distortion produced by each section of the i.c. rises rapidly
with increasing input voltage, but is less than 1% for signals of approximately 500 mV r.m.s.: at this level, the signal-tonoise ratio is of the order of 70 dB . As the two sections of the device are used in a tive gain of two, the input signals to the two sections are attenuated to a level of about 150 mV (for an input of $\pm 1 \mathrm{~V}$). This results in a much improved distortion figure of less ratio of about 65dB
To produce a differential output signal from the single-ended input, two
sections of a quad amplifier i.c. Type 348, are used in a phase-splitter resistor, in series with the 8.2 kilohm esistor in the feedback line of the first amplifier, allows the overall gain of the
delay line circuit to be adjusted to unity The two remaining sections of the i. are used to mix the -1.5 V bias levels
with the differential signals. Both d.c bias levels are made adjustable so that the optimum setting for minimum distortion may be found and the final adjusted for zero offset. The first 741 amplifier after the delay i.c. adds the signals from the two chan nels of each section together and sub from the other. The final 741 and associated components is a two-pole Butterworth, low-pass filter for the removal of the clock frequency from the output signal. For the values given, the cut-off frequency is 2 kHz . Finally, the by the oscillator of Fig. 5, are two-phase square-waves, one being the complement of the other
Window comparator. The input stage of the circuit in Fig. 4 is differential accepting inputs from across the delay

52

Fig. 5. Clock oscillator and digital delay.

Fig. 6. Track/hold and filter-switch, which corresponds to blocks of Fig. 1(a)

WIRELESS WORLD. AUGUST 1979 Fig. 3 and the output from Fig. 3. It has a voltage gain of unity. By means of the 5
kilohm variable resistor in the feedback line OPA ${ }_{2}$. the reference voltages on the positive input of OPA_{4} and the negative input of OPA_{5} can be varied from zero to
+0.5 V and -0.5 V , respectively $+\quad+0.5 \mathrm{~V}$ and -0.5 V , respectively. Thus, input stage is within the 'window' of the references voltages, the outputs of both OPA_{4} and OPA_{5} will be nearly
-7.5 V . However whenever the -7.5 V . However, whenever the input greater than $\pm \mathrm{V}_{\text {ref }}$, then either OPA_{4} or OPA_{5} will produce an output voltage of nearly +7.5 V . This positive voltage level is transmitted, via diode D_{1} or
diode D_{2}, to the digital delay circuit of diode D_{2}, to the digital delay circuit of
Fig. The positive voltage pulse lasts as long as the window level is exceeded.

Clock oscillator and digital delay. This circuit, shown in Fig. 5, generates for the delay i.c., accepts inputs from he two interference detector circuits track/hold circuit
The clock oscillator is constructed from a 4047 c.m.o.s. i.c. and is connected for astable operation. The time-period given by $2.2 R \mathrm{C}$, where R is the 20 kilohm resistor in series with the 100 kilohm variable and C is the 50 pF capacitor Two square waves, in anti-phase to ach other, are available from pins 10 nd 11 with a period that is twice tha
from pin 13 , i.e. $4.4 R C$. These two square-waves are used to clock the analogue delay i.c. of Fig. 3. The output from pin 13 is fed to a multiple-stag upple counter (c.m.o.s. type 4040), the counter (c.m.o.s. type 4017). These two counters together produce the adjust able 'minimum hold' period of from $11 /$ o $41 / 4$ times the analogue delay period. The multiple-stage ripple counte
divides the clock frequency by 256 to produce a square-wave with a period o half the analogue delay time. Since the ecade counter is advanced by oositive-going pulses on its clock input, it advances its first count (from the period of only a quarter of the analogue delay time. The third count is thus eached after $11 / 4$ analogue delay riods, the fourth after $13 / 4$ analogue mum delay of $4^{1 / 4}$ analogue delay periods after 9 counts. The output from the decade counter is used to control the mode of operation of the track/hold circuit. The required minimum hold input of the track/hold circuit to the appropriate output from the decade counter, i.e. outputs 3 to 9 . The 'enable' input to the decade counter is also connected to the selected output of the
decade counter so that when the selected count is reached the counter is disabled until such time as it is reset. In

WIRELESS WORLD. AUGUST 1979
the decade counter will be in its disabled The output reached its selected count. thus at the logical 1 level, maintaining it in its track mode. When an interference pulse is detected, the ripple counter and reset. The output to the track/hold becomes logical 0 , initiating the hold mode. The hold condition is thus maintained until the reset line to both delay period completed.

Track hold and filter switch. The principle of the circuit of Fig. 6 is as described earlier with reference to Fig. 1(a). The three switches of Fig. 1(a) are contained in a quad bilaterial switch i.c. type 4066. (This was used in preference to the 4016 type because it has a lower package is shown separately as an individual circuit block with appropriate pin connections. The switches S_{1}, S_{2} and S_{3} of Fig. 1 (a) are shown in Fig. 6 as switch S_{3} is normally open when S_{1} and S_{2} are closed, the remaining switch, circuit block 4 , is used to control its operation. When tracking the input signal the input to the track/hold circuit tion circuit blocks 1,2 and 4 are in their on state. The on state of circuit block 4 produces a logic 0 level at the control input of circuit block 3, with the result track/hold input becomes logic 0 , circuit blocks 1,2 and 4 go into their off states, but circuit block 3 goes into its on state. Thus the correct operation o the three circuit blocks 1,2 and 3 is controlled
track/hold input. The holding of achieved by storing it across the 47 nF capacitor. Because of the low source impedance of the input to the capacitor it is able to follow the input signal in the tracking mode. When the input to the
capacitor is disconnected in the hold mode, it discharges only very slowly because of the high input impedance o

Low-pass filter. The circuit of a 5 lement, Chebyshev, low-pass filte with 0.1 dB ripple in the pass band is Shown in Fig. 7. Operational
amplifiers, not emitter-followers, are used to buffer each element of the filter because zero d.c. offset between input and output, with good temperature stability, is required. The overall voltage unity. Values for the resistor/capacito combinations are not given, but may be obtained for each element by referring to the appropriate time constant, T_{n} and the formula, $R_{\mathrm{n}} C_{\mathrm{n}}=T_{\mathrm{n}} / f$, where
is the required cut-off frequency at the is the required cut-off frequency at the
0.1 dB attenuation point. For good results, the $R_{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ combinations should be determined to within 1%

djustment

For the AIR to function satisfactorily must be adjumber of parameters that of the required data. They are -the filter cut-off frequency the analogue delay period
-the minimum hold period
-the window comparator reference voltage
The bandwidth of the data in which the author was interested was a fairly narrow one of zero to 25 Hz . The data to ecorded onto magnetic tape using frequency-modulation and frequencymultiplexing techniques. The cut-off frequency (3 aB point) of the low-pass filter in the recorder replay electronics was 150 Hz
Since the required bandwidth of the cut-off frequency for the filter was an easy one, namely 25 Hz . The selection of the analogue delay line period, the minimum hold period and the window comparator's reference votage are all dependent upon one another. A good to consider the period of the ringing produced by the filter in the taperecorder playback electronics. As this was a 150 Hz filter the period was, not
surprisingly, about 7 ms . For the maximum value of the minimum hold period of $4^{1 / 4}$ analogue delay periods to be greater than 7 ms , the analogue delay period must not be less than $7 / 4 / 4$, i.e. 1.7 ms . For convenience, this was mined that the minimum hold period be adjusted to $33 / 4$ periods, i.e. $71 / 2 \mathrm{~ms}$.
The setting of the window comparator reference voltage was determined by considering the highest frequency signal of full modulation range that should remain undetected by the comparator. For the type of data being no large-amplitude signals present with a frequency higher than 10 Hz . This value was thus taken as the upper frequency up to full modulation amplitude.
The maximum rate of change of volThe maximum rate of change of volcrossing point and has a value of $2 \pi f V_{\mathrm{pk}}$ volts $/ \mathrm{sec}$. For a full modulation range of $\pm 1 \mathrm{~V}$ and a frequency of 10 Hz this value is approximately 63 volts $/ \mathrm{sec}$. For an
analogue delay period of 2 ms , the window comparator reference voltage should thus be set to $63 \times 0.002=$ 0.126 V . If a larger period had been chosen for the analogue delay period, would also have had to be chosen.

Application

In case any readers are dubious about the value of the instrument over the
narrow bandwidth of zero to 25 Hz , let me give a specific example of its useful-
ness. As was mentioned earlier, trans ducers are attached to such structures as railway carriages and road vehicles in order that the dynamic performance Among the more frequently used trans ucers are strain-gauges, used to stud the dynamic strains (and, hopefully stresses) that structures undergo in heir normal working environments. obtained from measuring these strain is an estimate of the structure's fatigue life. It is a fact that the higher values of strain have a considerably greater effect upon the accumulated damage to th quently, it is absolutely essential, if anything like a correct estimate of fatigue life is to be obtained, that un wanted high amplitude signals be experiment to determine the fatigue life of part of a road vehicle's chassis, much of the recorded data suffered from considerable amount of interference of he sort previously mentioned. Whether quality, or the tape-heads were dirty is not known, but the interference wa such that the data was quite impossible to analyse. By passing the data through described in this article prior to feeding it into the computer, it was possible to salvage the results of the experiment. The results of fairly simple simula tions showed that the effect of using the interference remover when carrying out spectral analysis, is to raise the back over the entire bandwidth. It was found that the noise level rose proportionally with the number of hold periods simu lated per unit time, i.e., with increasing levels of simulated interference. It wa higher the frequency of the signal source and the larger the hold period, though not proportionally. To put some figures to these comments: it was found 70 dB resulted when a 5 Hz signal was used as the data source, with a hold period of 5 ms and an interference level of about 1% (i.e. an average of 2 hold periods/sec.). For a 20 Hz signal as the 1% interference level (i.e an average of about 0.67 hold periods $/ \mathrm{sec}$) the ratio worsened to about 50 dB .
In the writer's experience, interference levels greater than 1% con-
stitute a serious interruption recorded data and, fortunately, do not seem to occur, except perhaps in short bursts in a relatively long piece of recorded data. It is fairly confidently concluded, therefore, that the efrect spectral analysis may be considered as negligible in most cases. If interference levels greater than 1% are experienced, then due consideration must be given to automatic interference removal

so far measured with metal tapes overal
results of $* * * *+$) results of ***(+) have been achieved
relative to top-formulation oxide tapes of various kinds.
Wé have been getting erase ratios of 60 dB ,
$40 \mathrm{~Hz}, 66 \mathrm{~dB}, 1 \mathrm{kHz}$ and $80 \mathrm{~dB}, 10 \mathrm{kHz}$. M.o.l.
 at $10-11 \mathrm{kHz}\left(-1 \mathrm{l}^{2}\right.$
to -6 dB with metal tapes compared with -1 dB (typical) with oxide tapes - on
ordinary machines! It seems that somene ordinary machines! It seems that someone
sometime published that metal tapes will be sometime published that metal tapes will be
sinularly unsuitable for ordinary machines sindiarly unsuitabie for ordinary machines
and that now commentators are incorrectly
disseminating this original statement disseminating this original statement with
out the support of detailed measurements. A mere 10% coercivity spread in my
judgement is not going to yield the intermetal tape compatibility problems as cited
by Hope. It seems such a pity that the start of a new cassette tape era is so blatantly attacked seemingly without technical support in defence.
As a further thought metal tapes can give a
renewed 'sparkle' to those machines in which the heads are worn and as a result the upper-frequency
oxide tapes. oxide tapes.
Gordon J. King
Brixham
Devon
The author replie
Although I am not qualified to agree or
disagree with Mr King's lab. measurements, I have a gut feeling that it makes sense to at
hat least start with an agreed coercivity e.g. 1,000
oersted, rather than a spread of 10%. The situation is analogous with surround sound. If material is encoded according to one
specified format then ideally it should be specified format then ideally it should be
decoded according to the same format. The decoded according to the same format. The
fact that liberties may be taken with the encode-decode chain, just as liberties may be taken with the coercivity-bias/equalization
relationship, is a bonus of serendipity. I discovered at Eindhoven airport, on the way back to England from the original
Philips metal cassette launch, that the tape Philips metal cassette launch, that the tape
would both record and erase on a portable machine without even a chrome setting switch. I was advised that the real test would
be to use the same portable machine to try be to use the same portable machine to try
and erase a metal cassette recorded on a metal machine. At the JVC and Metafine
joint launch in London Idid just this. I loaded joint launch in London I did just this. I loaded my portable machine with a demonstration
Metafine cassette produced by JVC and my Metafine cassette produced by JVC and my
portable erased it. Even when reproduced portable erased
over the hi- sisund system used by JVC for
the press launch there was no trace of the press launch there was no trace of
residual signal after erasure on the portable. No one from JVC or 3M who was present could explain this phenomenon, which flies
in the face of everything we had been told to expect about metal tape, and both JVC and exp promised to come back to me with
further information. I have not heard anyfurther information. I have not heard ant thing further f
Adrian Hope

3D TELEVISION The article by Professor D. A. Bell, "What
future for television"(November 1978, issue) calls for comment and correction. calls for comment and correction.
He mentions the visual a naloge of sur-
round sound shown in Brussels in 1952. I did round sound shown in Brussels in 1952 . I did
not see that show but did see a very similar not see that show but did see a very similar
demonstration in London, I believe in the
early 1960s. As described in Bell's article the
circular theatre to observe a "circle" of eigh pictures of the usual Academy 4×3 format eight projectors were synchronised and appropriate sounds emanated from speakers
eehind the screens. The exhibition was called "Circlarama" and I believe was sponsored by a Russian organisation. There was no story
line to the presentation but just a series line to the presentation but just a series of
moving scenes filmed in the USSR. It was moving sffective and I I particularly remember one of the last sequences where the cameras were mounted atop a vehicle travelling
through a large city and it suddenly swung through 90 degrees to the right to pull into a coach park. The psychological impression
was so forceful that, although perfectly sober was standing on a solid cement floor, I had
and ster the standing on a soidd cement fioor, H had
balance and almoculty in maintaining my balance and almost fell over! The theatre was
situated just behind Piccadily Circus the situated just behind Piccadilly Circus the
entrance being situated in Denman Street. If any reader could refresh my memory concerning the date or other details I would be
most obliged. most obliged.
The suggesti
The suggestion that one may present a
stereo pair by halving the field of view and serenting two side-by-side piactures which
can then be combined by polarisation techcan then be combined by polarisation tech-
niques ignores two problems, although niques ignores two problems, although
basically feasible. In practice the nonlinearity of the line timebase in normal
domestic receivers resulting in differing domestic receivers resulting in differing
geometric distortions in the horizontal plane will prevent the efft and right images being
correctly superimpose. Also one cannot correctly superimposed. Also one cannot
simply superimpose them by crosssimply superimpose them by cross-
polarisation. One has to displace them optically, which of necessity requires the use
of a light tunnel with suitable mirrors and of a light tunnel with suitable mirrors and
then this slimits viewing to one person at a then this limits viewing to one person at a
time. Not a viable commercial/domestic proposition although suitable for some scientific applications.
A three-dimensional colour system fully
compatible with existing colour tv channels compatible with existing colour tv channels
has been in existence for some time. It
produces 3-D pictures in colour and the only produces 3-D pictures in colour and the only
modification necessary to existing equipmodification necessary to existing equip-
ment is the addition of a separate module inserted into the camera lens. The resultant
pictures which may be on ordinary colour pictures which may be on ordinary colour
film or colour tv are seen as normal "flatties" when viewed normally, but if viewed through appropriate spectacles are seen in 3-D. A description of the system, based on the
analglyph system is described in the American Cinematographer for Apriil, 1974. This journal contains several "stills", taken by this
method plus a set of spectacles which cause method plus a set of spectacles which cause
the pictures to appear in 3-D. Therefore a compatible system as called for by Professor Bell is now available. It was developed by Video West Inc.
Professor Bell
Professor Bell states that "the cinema tried
stereoscopic presentation, e.g. by the red stereoscopic presentation, e.g. by the red to have produced any normal film in 3-D
neither feature nor documentary". This is one hundred per cent incorrect. A list of one hundred and twenty-one 3-D films appears in
hut
the above mentioned journal including fea he above mentioned journal including fens At least one hundred and eighty such pro-
ductions have been made in the West ductions have been made in the West,
variously in Polaroid, Analglyphic and Len-
ticular.
In the USSR stereoscopic cinematography has absorbed a large amount of effort for many years and many special 3-D motion
picture theatres have been constructed in
their larger cities and have
large attendance. Full length feature films are regularly shown.
Finally there is Finaly, her is now some sign that con
densed versions of versions of American 3-D produc ne is "TTe Cing available to amateurs Lagoon", 1954 (Polaroid system) available from P.M. Films Ltd, Windsor End, Beaconsfield. This is a 2 -reel sound analglyph version or the ame
colour). A second is "It Came From Oute Space", 1953 (Polaroid system) but Duocolour analglyph for amateurs. This is avail Lable on Super-8 sound from Capitol Film 16 mm sound from Golden Films, of Frances Road, Windsor.
Professor
Professor Bell really must do his
homework before he writes another articl homework before he writes another article support him is in prodding the broadcas authorities into televising some of the pro
fessional films made in analglyph. Although only people with colour receivers could view them and they would probabbly have to be
broadcast outside normal peak hours, why broadcast outside normal peak hours, why
not! The $B B C$ in particular seems addicted to showing old films; why not a few 3-D as well! Most of us have never seen them and would welcome the
A. E. Lott
Reading, Ber

SHOW LEGISLATION

ON TELETEXT
the January issue has presented itself. reported that "nearly 70% of the top executives in Britain are ignorant of the product-liability laws soon to be drafted into he country." This is just another example of probem which the Kilbrandon report de-
cribed in 1973, when it remarked that the modern flood of legislation makes ignorance
of the law not only excusable but inevitable. the law not only excusable but inevitable.
Elsewhere (para 1243) Kilbrandon said that television should be used to show people how government is run. If teletext had existed at
the time the Commission wuld doubtless have remarked on its various possibilities. Teletext can go a long way towards solvin he problem of ignorance of the law by systeaatically keeping us up to date with legisla-
tion. It can become a "legislative-information-system" by setting aside a group of pages which would list and summarise a new bills and statutory
period of 1 or 2 months.
In addition the most important bills should be treated more fully with the most import-
ant clauses being displayed verbatim once in the form in which they were introduced into parliament and again in the form that was eventually passed. The purpose of einitial display would be to enable us to make representations
If teletext begins this service it will soon Those responsible for teletext should tak Tomort from the fact that the system is currently in the same position that the lase
was in 20 years ago. It is a solution looking or a problem. There are plenty of problems or a probiem. There are plenty of problems
which teletext can solve and the people
concerned should take heart from the laser example.

Audio preamplifier with no t.i.d.

Passive equalization eliminates transient intermodulation
by Yuri Miloslavskij, Institute of Constructional Physics, Moscow

In valve circuits, device linearity received much more attention than it does with ransistors. Now, everything relies on
feedback. Or one decreases steepness of the output characteristic of bipolar transistors with the help of an additional ransistor.
But you may use a single transistor
with better linearity. The problem of with better linearity. The problem of
optimizing the number of stages is associated with having sufficiently linear properties, gain, noise and other characteristics. Designers of semiconductor devices should pay serious attention to designing such components. Their use would give even provides.

THE GREAT MAJORITY of published designs for electromagnetic pickup preamplifiers realized with valves or semiconductor devices have a feedback correction circuit according to RIAA more often the entire preamplifier. In other, rare, cases preamps have a common negative frequency-independent feedback in individual units with the correction in a passive circuit. By such a been often achieved as to the harmonic and intermodulation distortion, though such attainment will never help to improve the sound to its original state as may be alme at all.
As to the playback frequency response it is clear that this, along with non-linearity increasing with increase in frequency, contributes to the tion, and the greater the frequency shift between the basic components and their associated difference tones the stronger is such emphasis.
So-called transient intermodulation result of novelty and complexity of this measurement, the lack of a unified and standard measurement method ${ }^{1}$ and the ack of quantitative information on completely ignored.
Listening tests also reveal specific distortions in preamplifiers, particularly in i.c. types. This was the reason for
problems have been involved also by some other trends in the amplifier de-
sign (among other things as a result of the quest for the realisation of the entire preamp as a d.c. amplifier)
But the return to valve circuits is hardly justified, even though it leads to As to semiconductor amplifiers the situation for most of their technical parameters is more favourable, i.e. frequency properties, noise characteristics, and power consumption. The com-
mon tendency is questing for non-linear distortion of the order of 0.001% or even less (this aim is difficult to attain by valve circuits and has not really been attempted). It is known that under con-
temporary conditions such a distortion temporary conditions such a distortion
level can be achieved only by the one method. But will it lead to the desired results?
To try and answer this question the
-
to particular frel level relating to particular frequencies at rated recording level-at l.f. the recording level is limited to a certain amplitude of groove displacement. (It would be useful to plot a frequency forponse of the maximum velocity given in reference 2 ; this relationship is also necessary to provide a logical method for distortion measure ment.) It's known that during recording some signals exceed this rated ance of a signal having, for example, a level $9 \times 3.54 \mathrm{~cm} / \mathrm{s}$ is not likely to be high (though this statement is not strictly exact because high level condition). In addition only few pickups can reproduce such signals. ${ }^{3}$

- Distortions introduced by recording process and disc production techno and additive tones, intermodulation distortion) at velocity $14 \mathrm{~cm} / \mathrm{s}$ are less than about 1% (at velocity $25 \mathrm{~cm} / \mathrm{s}$ no more than 4% (!) harteed on B\&K test-record QR2010)
- Distortion introduced by the repro duction process because of certain factors (tracking distortions, pinch effect, angle distortion, refs 4 to 7) at
corresponding recording velocities exceeds distortion introduced by frequencies may be as great as 10% and even more for harmonic distortion, 3 to 4% and more for intermodulation distortion ${ }^{3,8}$. Additive and difference tones distortion is of the
- The hearing square and cubic nonlinearity ($P_{2}=\alpha_{1} P_{1}+\alpha_{2} P^{2}+\alpha_{3}$ $P_{1}{ }^{3}$) shows itself as the subjective presence mainly of difference tones, as a rule exceeding hearing threshconsists in masking of some tones including distortion products by ouder tones under certain conditions. For example the white noise in the tone if the sound pressure level exceeds the spectral density noise level by 17 to 30 dB . (Refs 9 .)
Studies performed in the USSR during late 1950's and 1960's sound producers and conservatoire students could not notice 2% square or cubic distortion in organ and violin solo performances. ${ }^{10}$ It was cubic distortion is studies that able than square distortion notice would expect.
- Distortion introduced by tape ecorders during recording, by the inal mixing of sound tracks, by factors act as an essential addition to distortion introduced during reproduction.
Based upon the above-listed considera tions one can obviously conclude that in numerous cases sound coloration by preamplifiers and power amplifiers is caused by some special, and if you lik properly pertaining to the electro acoustic transducers and to the ear. Transient intermodulation distortion as well as distortion severely increasing
at low levels and large non-linearity high order may be attributed to the above-mentioned special non-linear distortion.
Large high-order non-linearity results in large amplitudes of high har-
monics, and of difference and additive tones of high order (an increase of side components of intermodulation spec-

WIRELESS WORLD, AUGUST 197
trum). This means lack of steepness in ficiently fast approach of coefficients α_{4} to α_{n} to zero in
$\mathrm{V}_{\text {out }}=\mathrm{kV}_{\text {in }}+\alpha_{2} \mathrm{~V}_{\text {in }}+\alpha_{3} \mathrm{~V}^{3}{ }_{\text {in }}+$
$+\alpha_{n} V^{n} \ldots \alpha_{2}$ to α_{n}
$V_{\text {in }}=b_{1} \sin \omega_{1} t$
$\alpha_{k}=\alpha_{k}(b, \omega)$.
Therefore the problem consists of finding a more optimal (logical) way of titative values) $\alpha \ldots, \alpha_{n}$, t.i.m. distortion, signal-to-noise ratio, $f_{\text {uperer }}$, and by as simple a method as possibleer. In designing the preamplifier it was disc reproduction would not practically increase correspondingly with frequency.and velocity and that distortion not properly pertaining to the electroacoustical transducers would not be to-noise ratio with pickup connected would be about $69 \mathrm{~dB}(\mathrm{~A})$ referred to an input level of $2 \mathrm{mV}(3.54 \mathrm{~cm} / \mathrm{s})$ at 1 kHz (ref. 11) and no less than 50 to 55 dB in is not necessary to aim at such a high figure as 69 dB at all because of worse signal-to-noise ratio of discs).

Based on the above-mentioned conpreamplifier for ar rut des for pickups with bipolar transistors which produces practically no transient inter modulation distortion (below). There is no common negative feedaccomplished in a passive circuit. The design is comparatively simple but it calls for high-quality components. The number of components and amplifier stages is practically minimal. The pre-
amplifier provides a gain of 34 dB at amplifier provides a gain of 34 dB at
frequency 1 kHz which more than twice exceeds the allowance required on the asis of data given in reference 2 .
This circuit design is based on a close nalysis, leading to the following main conclusions

1. Bipolar low-noise transistors are now mplification linearity at rather good ents beginning from 100 to $150 \mu \mathrm{~A}$, a he same time as maintaining the re quired frequency properties at thes Furrents.
From the distortion viewpoint the ircuit is between the first and second amplification stages. rection circuit does not cause trouble,
provided the operating conditions of the subsequent (and the first) stage are optimally selected and a low-noise transistor used.
2. Analysis of circuitry for a preamstage with either passive or negative feedback RIAA correction) leads to unattainable technical requirements especially for moving-coil cartridges.

Circuit description

The first amplification stage provides $75 \mu \mathrm{~s}$-time constant referred to 2 mV pe
$3.54 \mathrm{~cm} / \mathrm{s}$ and its input resistance is $3.54 \mathrm{~cm} / \mathrm{s}$ and its input resistance is standard value (30,47 or $100 \mathrm{k} \Omega$). The required collector current in the firs amplification stage is set by R_{3}. A bia
circuit with fixed base current (rarely circuit with fixed base current (rarely
used) was selected mainly on the basis that the input resistance of the first amplification stage should be at leas $100 \mathrm{k} \Omega$, and that contemporary low noise low-power silicon transistors have $\ln \mathrm{A}\left(\mathrm{V}_{\mathrm{c}}=0\right.$ to $\left.5 \mathrm{~V}, \mathrm{~T}=20^{\circ} \mathrm{C}\right)$. At temperatures of $25 \pm 20^{\circ} \mathrm{C}$ instability of collector current is less than $\pm 7 \%$ (with

Michael Sagin plans to
provide printed circuit boards provide printed circuit bsere version or ξ^{3}
finclusive of V.A.T. and postage. His address is 23 Keyes Road
N.W.2.
$\begin{array}{lllll}\text { BCY } 55 & C_{5} & 220 n & R_{7} & 25 \mathrm{k} \\ \text { BCY } & C_{5} & C_{6} & 470 & R_{9} \\ 33 k \\ 1000 & C_{7} & 1 . \mu & R_{8} & 160 \\ \text { 100 } & \\ 30 \mu, 25 \mathrm{~V} & C_{8} & 300 \mu, 25 \mathrm{~V} & R_{10} & 1 \mathrm{k} 4 \\ 1.0 \mu & & & & \\ & & & & \end{array}$教 $-\longrightarrow \longrightarrow$

$2 \mathrm{mV} / 3.54 \mathrm{~cm} / \mathrm{s}$		$200 \mu \mathrm{~V} / 3.54 \mathrm{~cm} / \mathrm{s}$	110رV/3.54cm/s
c_{L}	50-250p		$220 n-10 n$
R_{L}	see text	see text	100
c_{1}	$2 \mu 2$	${ }^{22 \mu}$	${ }^{22 \mu}$
$\mathrm{R}_{1} \mathrm{R}_{2}$	100		7R5
R_{6}	1 k	100	${ }^{27}$
R_{5}	75k	33k	33k
R_{4}	24k	6 68	${ }_{6 k 8}$
R_{14}	750	330	330
R_{13}	43k	33k	33k
R_{12}	33k	6k8	6k8
R_{3}	$-1 \mathrm{C}_{1}=200 \mathrm{\mu A}$	$\rightarrow C_{1}=500 \mu \mathrm{~A}$	$-\mathrm{Cc} \mathrm{C}_{1}=500 \mu \mathrm{~A}$
R_{11}	$-1 C_{2}=200 \mu \mathrm{~L}$.	$-\mathrm{C}_{2}=500 \mu \mathrm{~A}$	$-\mathrm{CC}_{2}=500 \mu \mathrm{~A}$

a sufficiently high value of R_{3}) and may
be easily tolerated Analysis reval this instability depends mainly on temperature drift of transistor current gain, and also on voltage source stability,
resistance value of isolation filter resistor (for voltage supply), and resistor tor (for
stability.
The value of collector current in the first stage $(200 \mu \mathrm{~A})$ meets in a compromising way the following contradictory requirements: necessity for utmost
minimized noise level on the one hand and obtaining the required distortion level, satisfactory frequency response and a level allowance with regard to peaks on the other.
The value of the local negative feed-
back resistor is selected back resistor is selected on the basis of
the same compromise. It should be noted that more stringent requirements are placed upon the linearity of the first stage of voltage amplification and upon its independence on frequency, and this
approach helps to decrease the level of difference tones derived even from very high frequencies. Harmonic distortion (referred to the second harmonic) should not exceed 0.03 to $0.06 \%(V=$. $14 \mathrm{~cm} / \mathrm{s})$; the upper frequency limit
should be as high as possible. The subsequent amplificat realized in the same manner. The collector current value in this stage $(260 \mu \mathrm{~A})$ was selected on a similar basis.
The next stage is the emitter follower. The preamplifier is constructed with the help of the following components. Transistors Tr_{1} and Tr_{2} are the differential assembly BCY55, which provides a frequency noises, sufficient linearity high gain in the operating current range, around 200 , and has the required requency properties. For isolation polycarbonate capacitors are selected (several isolating capacitors provide the ating signals containing infra-low frequencies). Resistors are of the high stability, 1% tolerance, low-noise class. f polycarbonate type, 2% circuit are Capacitor C_{E} is of mica 2% tolerance. ate type; it is selected on the basis of pickup specification and input cable apacitance. Transistor Tr_{3} is a lownoise linear silico
gain is about 1000
The preamplifier is supplied by battery or by a stabilized voltage source in a separate casing. The principle circuit diagram of this supply unit is age is 24 V , hum level no more than 3 mV . The application of this powe supply circuit provides a safety margin for the required isolation from conducted interference of various frequencies and hum. This power unit and its
isolation filters, does not introduce additional noise and interference at the preamp. output. Electrolytic capacitor of power unit and isolating filters are o solid tantalum type. Other capacitor are of low-inductance film type.

Thirty-two years old Yuri Miloslavkii is presently doing post-graduate work in the
laboratory of architectural acoustics with the Insitute of Constructional Physics, Moscow. He first started working in the
field of acoustics and electron field of acoustics and electro-acoustics a
the Institute of Television and Broadcasthing which he joined five years ago. Yuri
ing whicsiavkkij gaduat Miloslavskij graduated in physics from
Saratov University in 1971 .

Recently moving-coil cartridges find expanding application even in nonfrom the obvious merits of that type. With such a circuit design the preamplifier may be directly connected to a moving-coil cartridge merely by giving rise to a deterioration in specification; in this case the preamp. provides a gain increase of $20 \mathrm{~dB}(26 \mathrm{~dB})$. Collector current in the first and the second stages in it $\quad \mu \mathrm{A}$. The former power unit is used merely by isolation filters. It thus becomes unnecessary to use a special pre-amplifier. The preamp. may be used even for carMC20, providing a very low output of $110 \mu \mathrm{~V}$ per $3.54 \mathrm{~cm} / \mathrm{s}$.
Similar modifications enable this preamp. to be fed by tape-recorder head or dynamic microphone signals.

Measurement data at input

levels of about 2 mV

1. Gain at 1 kHz frequency: 34 dB (amplification instability in the above-mentioned temperature range
is no more than 0.5 dB .
Signal-to-noise ratio
put level 2 mV at 1 kHz with a magnetic pickup connected: $64 \mathrm{~dB}(\mathrm{~A})$; in 3. Harmonic distrint to $22.4 \mathrm{kHz}: 58 \mathrm{~dB}$. $8 \mathrm{mV}(14 \mathrm{~cm} / \mathrm{s})$ at 1 kHz : 0.15%. (In 8 mV ($14 \mathrm{~cm} / \mathrm{s}$) at $1 \mathrm{kHz}: 0.15 \%$. (In
constant output voltage mode harmonic distortion doesn't increase with increase in frequency. Analysis
of the level of high harmonics $n=4$

20 with f nell hat their $\mathrm{f}_{\mathrm{n}}=1=1 \mathrm{kHz}$ has reveale he third and especially the second harmonic; this demonstrates mor than necessary attenuation of nonlinearity.)
4. Intermodulation distortion at input ${ }_{7 \mathrm{kHz}}$ levels $1 \mathrm{mV} / 60 \mathrm{~Hz}$ and $8 \mathrm{mV}(16 \mathrm{mV})$
5. Difference tone 1 kHz with input leve of basic frequencies 10 kHz and 11 kHz being 8 mV and at an amplitude ratio $1 / 2: 0.3 \%$. Additive tone distortion doesn't exceed har
monic distortion. 6. Distortion increas to input level with a proportionality factor of about one
7. Frequency response accords to the to 10 kHz with $\pm 0.5 \mathrm{~dB}$ accuracy $(30 \mathrm{~Hz}+1 \mathrm{~dB}, 20 \mathrm{kHz}+3 \mathrm{~dB})$.
8. With the gain at 1 kHz being equal to 40 dB (the second stage gain increase is 6 dB$) \mathrm{s} / \mathrm{n}$ ratio referred to $2 \mathrm{mV} /$
kHz is $67 \mathrm{~dB}(\mathrm{~A})$. In this kHz is $67 \mathrm{~dB}(\mathrm{~A})$. In this case the har-
monic and intermodulation distortion increase for times (compared with $3 \& 4$); the difference tone distortion remains of the same order
as in 5
9. The upper 3 dB frequency limit of amplification exceeds 125 kHz (interoscillator was made $15 \mathrm{k} \Omega$, the approximate equivalent of a pickup
and C_{L} at $h . \mathrm{f}_{\text {, the }}$, correction circuit and C_{L} at h.f., the correction circuit
under RIAA stipulation changed to 240 -ohm resistor; and capacitor C_{L} eliminated).

Measurement data at input levels of about $200 \mu \mathrm{~V}$

2. Gain at 1 kHz frequency: 54 dB . put level $200 \mu \mathrm{~V}$ at 1 kHz with an equivalent cartridge resistance 5 ohm: $61 \mathrm{~dB}(\mathrm{~A})$ and in linear band 22.4 Hz to $22.4 \mathrm{kHz}: 54 \mathrm{~dB}$.
3. Harmonic distortion at input level
4. Intermodulation distortion 0.15%.
5. Intermodulation distortion at input
levels $100 \mu \mathrm{~V} / 60 \mathrm{~Hz}$ and $800 \mu \mathrm{~V} / 7 \mathrm{kHz}$ 50.25%.
6. Difference tone with level of basic
frequencies 10 kHz and 11 kHz being frequencies 10 kHz and 11 kHz being ${ }^{80.2 \%}$.
7. Signal-to-noise ratio referred to input level $110 \mu \mathrm{~V}$ at 1 kHz at preamp. gain 60 dB (first stage gain nearly input level $9 \times 110 \mu \mathrm{~V}$: $78 \mathrm{~dB}(\mathrm{~A})$. Difference tone doubled (compared with 5), though harmonic and intermodulation distortion remain as in 3 . $\& 4$.
Other
than in prical data are not worse levels of 2 mV per $3.54 \mathrm{~cm} / \mathrm{s}$.
${ }_{2}$ maximum recording velocity at 60 Hz around continued on page 86

Citizens' band communication system

by Howard T. Tillotson, M.A., M. Inst.P

Although many of the world's developed nations perma chizens band, whicate using modest radio transceivers, this is not so far the case in the UK. One of the licensing authority's central objections to its introduction here is that other established services working on the
frequencies which are conventional for frequencies which are convent be
c.b. in other countries would be adversely affected by its introduction The author of this article maintains tha there are alternative reasons for no
introducing it in its existing form. introducing it in its existing form. be ineffective as a basic channel of "message carrying" for the same reas as the telephone's main limitation, i.e. hat someone has to be there to answer micro he outlines a possible conventional c.b. frequencies.

The idea for this communication system had its origin in a long-standing wish to own and operate a pair of "personal that they would be very useful, but on reflection it becomes clear that they could never be employed in an effective manner. As an example, a c.b. walkie-talkie could be taken along a busy city centre and subsequently becomes split up in the crowds. In principle it could be used to arrange a rendezvous, but in practice very few people would be prepared to hang around in a "raise" someone who may or may not be listening out for a contact.
In its conventional form c.b. communication is very much like the telephone in that it is a good idea but
somewhat inadequate as a direct contact device. It is really only useful if the person you want to speak to happens to be near the particular instrument you are calling. Further deficiencies include
the fact that a message cannot be lett if the fact that a message cannot be left if
the instrument is not answered (except where an answering machine is in use) and the impossibility of speaking to someone on a line which is already engaged. Companies are forced to instal come this inadequacy. The private subscriber probably suffers this situation because of the more time-consuming
scribers are not aware that technical processes exist which could provide a ar way, c.b. communication in its con ventional form requires that the recipient be listening when the trans mission is made, and voice transmissio a waty. The o
The outline which follows is con echnical details and combines some of he advantages of the telex system with aspects of c.b. operation,
microprocessor techniques.

General outline

he hardware consists of a hand-held portable unit with dot matrix display nits capable of displaying alpha fitted with a key-pad providing feature similar to those of a typewriter. As messages are entered on the keyboard of the sending machine, so they are transmitted in an encoded form to the receiver, where they are displayed. Each side of the display, moving gradually to the left for reading.
As it stands, such a system demon strates certain deficiencies. Th message in order to read it as it appears and in such a basic system the carrier would be operating all the time the message was being displayed, thereby wasting power. An improvement could storage to assemble a whole messag prior to transmission and then to trans mit this into a similar storage system a the other end. Having received ${ }^{-}$ message the unit would give either an
audible or visual alarm to indicate that a message had been received. The opera tor could then press a button to activate the display. Such a storage method also mplies that a unit could be left switched he alarm the owner of the machin knows that a message has arrived but need not be read immediately - this could be left for a more convenien moment, say in quieter conditions. equipment should provide confirmatio to the sender that the message has been received and stored - this would b

User identification and the c.p.u. As a large number of users would prob mitter, and there may well be restricted bandwidth available, it would be necessary to introduce more selectiv operation of each process. This could be managed by introducing microproces sor control and an "address" cod
which refers only to the recipient of the message. This code is transmitted firs and only the receiver with the correc code continues to read. Similarly, in order that the recipient knows who ha
sent a message, the address code of th sent a message, the address code of the
sender could be included at the end of each transmission.

In-car communication

A popular feature of conventional c.b activity is the capability it gives to the accupants of cars to communicate wit operate a key-pad would in genera orce a driver to stop the car before sending a message. This could help to vercome one of the objections of thos opposed to the introduction of c.b a driver to attempt both activitie simultaneously, although it might be rgued that the temptation to transmit while actually driving might still b more dangerous. On the other hand, a least car registration numbers could be used as the address codes which would also make it a fairly simple matter fo check upon such activities.
The requirements for users to know each address code in the network migh be thought a dangerous feature at firs ght as a perverse approach might lea
o trouble - using someone else's for example. This will probably no prove to be the case as any message received which were intended fo somebody else would automatically prevent any decoding of messages in analogy might be that of someone hol ding the telephone handset off the hook in the hope of picking up an interesting message on a cress line, thereby mis him.
So far, the system would function, bu there are a number of problems relate
time example, if a machine could not get ime on a channel owing to the available other machines, the processing unit would have to calculate the wait rea uired before transmission could take place and fit this into a priority sequence. How long a machine should wait before abandoning the message question of linking all units together (perhaps using a brief pulse "recognition" sequence) so that the intelligence to calculate traffic density, waiting time and urgency would exist in a form
shared by all units. shared by all units.

Most of these processing activities should be fairly easy to arrange using current logic devices, but the question damental problem of transmitter coverage. As each transmitting unit would have to be restricted in its output power, messages might not be read properly, so a network of relay stations would have to be set up. Undoubtedly this would cause a good deal of debate
between the advocates of such a system and the relevant funding body, but it would clearly be essential if the system were to be truly effective. The relay system could be optimised by program- by the user when the destination is

Summary

As described here, a basic message communication system could overcome conventional interference problems of would of course eliminate the usual "chit-chat" nature of immediate voice contact. However, it could be useful and should be relatively easy to around modern processing and display devices.

Audio processor design

continued from page 39
to-pk. Turn the clipper drive to maximum and adjust R_{65} for 350 mV pk-topk , then turn it to minimum and adjust R_{64} so that the level falls to 35 mV pk-to-pk at TP4. Monitor TP5 and with R ${ }_{67}$ oscillator frequency by C_{50} until a maximum i.f. signal is obtained. Temporarily remove the audio and carefully adjust R_{66} for a minimum i.f. signal less than 200 mV pk-to-pk. Reconnect
the audio and monitor TP6 to observe a sinewave. If the output is not a sinewave, repeat procedure on TP5. Increase R_{67} until the signal limits, then drive checking that the level clipper constant.
Set the sig. gen. to 300 Hz , readjust C_{50} until the waveform is undistorted and the level has fallen slightly below its
maximum (about 15%) Repeat the car rier null adjustment (i.e. remove audio and adjust R_{66} for minimum i.f. signal). Next adjust the output preset R_{688} to obtain a 1 V pk-to-pk fully-clipped signal at the output.
Monitor TP7
Monitor TP7, checking that the level
is the same with the switched in and out, - i.e. IV pk-to-pk. Finally, connect the microphone and monitor TP7, adjusting the meter for speech to just peak. Turn the clipper to the clipper in and out. If there is any sign of clipping, adjust R_{67} to reduce the i.f. gain until the effect disappears. Typical waveforms expected at the test

Application

It is vitally important that a compressed signal is correctly applied to the transmitter with which it is to be used. The
methods of setting up levels will, to a methods of setting up levels will, to a in use and what metering is available. Most s.s.b. transceivers have poweroutput metering, so setting levels
should be straightforward should be straightforward. Switch in
the clipper and turn up to full, adjust the mic. gain for correct meter reading, turn up mic. gain on transmitter to full and
set the output preset on the processor to minimum. Key the transmitter and talk mody or whistle, to ensure fullest preset until then turn up the output reaches its maximum Aner just power/v.s.w.r. meter would also suffice for this stage of the proceedings. For f.m. applications, the process ideally requires a peak deviation meter for best results. In this case, proceed in a similar the output to the point where the peak deviation reaches that required typically 5 kHz for amateur applications. Experience shows that, in normal use, the tone control should be adjusted for stations, and the clipper should be used progressively as the stations become more difficult to work. When the clipper is about half advanced it is advan tageous to switch in the high lift which
will make the effect of the clipper pronounced. Use of the high lift is optional and experimentation will provide the optimum for a station's needs. When used with f.m. transmissions, th

Internal layout of the audio processor Interna
unit
lipper should be turned half up at al times. When using the clipper at high ain , it is very desirable to keep the mic. gain down and talk closely into the noise. When using the audio up room noise. When using the audio processor
s.s.b. talk power should be increased by about 10dB and f.m. talk power by about 5 dB .

Components

All resistors are $1 / 8 \mathrm{~W}$
ectrolytic capacitors are 16 V workin Capacitors in audio stages are polyester
Capacitors in audio stages
or similar types.
Preset and control poten Preset and control potentiometers are carbon track linear.
L_{1} and L_{3} are Cambion type or similar. L_{2} is made as follows: 130 turns of 0.355 ull enamel covered wire wound on Core LA1222 21 mm Ferroxcube Pot Filter: KVG XFM 10.7-F61

Acknowledgements

The author would like to express his thanks to the many amateurs (es pecially Gerry G3MMW and Richard and subjective comment

Passive notch filters - 1

How to design narrow-band stop filters for the range 1 to 100 MHz
by G. Kalanit, B.Sc., M.I.E.E., Rediffusion Engineering Ltd

Information for a variety of types of narrow band stop filters is available from many sources. Most specialize in a type and in a frequency range and the reference list at the end of the articles groups them under specialized heading But selecting the right type of filter for
the particular job at hand from the list of articles is laborious and time consuming And little information is provided about design procedure and hardware. This article provides design procedure as well as hardware details. To simplify the description of the examples sufficient formulae and statements are given without theoretical proof; normally theoretical and mathematical development is left to the end of each

THIS ARTICLE concentrates mainly on from a prototype lattice or Wheatstone

Example 1: Constant resistance bridged-T

null notch filter

One may consider the constant resistance notch filter as the general case importance is mainly in transmission lines where the total energy of the rejected signal is absorbed in the resistive arms of the filter, i.e. no energy is transmitted beyond the filter and no energy (in practice a little) is reflected no insertion loss. The following demonstrates a design of bridged-T constant-resistance null notch filter. The requirements are
-notchifrequency f_{o} 32MHz
-stop band-width a insertion loss of -
-filter to be used on a 750 hm transmis-
sion line,
e. constant resistance of filter to be 75 ohms
The prototype lattice is shown in Fig. 1.1. To simplify the description, all and R_{b}; the coils and capacitors are assumed to have no losses.
At resonance (32 MHz) the circuit has to Fig. 1.3 as a Wheatstone bridge. By
bridge. At the notch frequency the arms of tour equal resistances which perform a null of the bridge and no output of the frequency appears at the filter output. At all other frequencies the filter acts a an all-pass network.
resonant arms is a balanced type of network. In most practical applications an unbalanced or grounded form that preferred, achieved with a hybrid transformer.
There are number of unbalanced configurations, all of which use the same hybrid transformer and the choice hand. The notations of the formulae refer always to the prototype lattice; thus the same set of formulae serve all the variations. A detailed description summarising all the configurations is transformer.

Fig. 1.3
inspection of Fig. 1.2 or Fig. 1.3 one can conclude that when $R_{\mathrm{a}}=R_{\mathrm{b}}=75 \Omega$ -output
ponent put, 2 and output 3,4 impedance at resonance equal $R=75 \Omega$ approximates to an all-pass network shown in Fig. 1.4.

Fig. 1.4

ig. 1.5
The bridged-T equivalent circuit of Fig. 1.1 is shown in Fig. 1.5, where H is a an ideal transformer with equal turns Fig. 1.5 is completely equivalent to Fig 1., i.e. input and output impedance is there is no output at 32 MHz acros terminals 3,4 ; all the energy at 32 MHz is dissipated in the resistors.
To satisfy resonance
$\omega_{0}{ }^{2}=1 / L_{a} C_{a}=1 / L_{b} C_{b}$ From Fig 1.2, for a null $R_{\mathrm{a}}=R_{\mathrm{b}} 1.2(\mathrm{a})$ filter $R_{\mathrm{a}}=R_{\mathrm{b}}=R$.
Next, the filter 3dB insertion loss bandwidth f_{3} is to be determined from ref. 10 page 226).

Fig. 1.6
frequency ${ }^{\circ}{ }^{\circ}$ (MHz)
The filter notch width is proportional to the amplitude response (Fig. 1.6). The filter requirement is that at -40 dB loss the width is to be $f_{40}=0.08 \mathrm{MHz}$. From Fig. 1.6, $f_{40}=0.01 \times f_{3}$, thus $f_{40} \times 100$ ore $32 \pm 4,28=8$ and 36 MHz . The
points are $32 \pm 4,28$ and 36 MHz .
width f_{3} and the components (appendix B) is

$$
\omega_{3} \cdot L_{\mathrm{b}} / 2=\frac{1}{\omega_{3} \cdot C_{\mathrm{a}} / 2}=R
$$

1.3
where $\omega_{3}=2 \pi . f_{3}=2 \pi .8 \mathrm{Mrad} / \mathrm{s}$
Component evaluation
From equation 1-3
$L_{\mathrm{b}} / 2=\frac{R}{\omega_{3}}=\frac{75}{(2 \pi .8)}=1.49 \mu \mathrm{H}$
$\mathrm{C}_{\mathrm{a}} / 2=\frac{1}{\omega_{3} \cdot R}=\frac{1}{(2 \pi .8) \cdot 75}=265 \mathrm{pF}$
From equation 1.1 (resonance a $\omega_{0}=32 \mathrm{MHz}$),
$C_{b}=\frac{1}{\omega_{0} \cdot L_{b}}$ or
$2 \mathrm{C}_{\mathrm{b}}=\frac{1}{\omega_{\mathrm{o}}^{2} \cdot L_{\mathrm{b}} / 2}=\frac{1}{(2 \pi \cdot 32)^{2} \cdot 1.49}=16.6 \mathrm{pF}$ Also
$L_{a}=\frac{1}{\omega_{0}^{2} \cdot C_{a}}$
$2 L_{a}=\frac{1}{\omega_{0}^{2} \cdot C_{n} / 2}$
$=\frac{1}{(2 \pi .32)^{2} \cdot 0.000265}=0.093 \mu \mathrm{H}$

WIRELESS WORLD, AUGUST 1979 cause the conditions of equation 1.2 are contained in equation 1.3. Equation 1.2 2. An important point from equation 1.3 , is that the notch width ω_{3} is independent of the resonance frequency ω_{0}. By re-writing equation 1.3 in another
form, $\omega_{3}=2 R / L=2 / R$ it is clear that to form, $\omega_{3}=2 R / L_{\mathrm{b}}=2 / R_{\mathrm{a}}$ it is clear that to coil L_{b} and capacitor C_{a} must be large. Also, it is possible to have a variable frequency notch of a fixed bandwidth, by keeping L_{b} and C_{a} fixed and only arying C_{b} and $L_{\text {a }}$
is composed of the dynamic impedance of the tuned circuit L_{a} and C_{a} in parallel with resistor R_{a}. Thus in practice a ariable resistor is employed which is adjusted during alignment to have a
total parallel resistance equal to $R_{\mathrm{a}}=75$ ohms, (or as in Fig. 1.5 equal to $2 R_{a}$ or 150 ohms). Similarly, the resistive component in arm ' b ' is composed of the losses of L_{b} in series with R_{b} (losses of C_{b} series with L_{6} is adjusted to have total series resistance equal to $R_{\mathrm{b}}=75$ (or as in Fig. 1.5 equal to $R_{\mathrm{b}} / 2$, or 37.5 ohms). The Q factor of the coils need not be particularly high. Q factor of a coil is $Q=\omega_{0} L / r$ where r is the series internal resistive loss of the coil L at ω_{0}. Dynamic impedance, $D=Q \omega_{0} L$, is the amplified impedance of the coil L at ω_{0} and Q is the Q factor of the coil L. The minimum Q required for the coils, is
found in the case where the total resis tive losses occur in the coils and no real resistor is employed. Therefore, if $\mathrm{Q}_{\mathrm{a} \text { (min.) }}$ and $\mathrm{Q}_{\mathrm{b} \text { (min.) }}$ are the minimal Q and Q is defined as the ratio resonance frequency f_{0} to the $3-d B$ bandwidth f_{3}, thus
$Q=\frac{f_{0}}{f_{3}}=\frac{\omega_{0}}{\omega_{3}}$,
then (appendix E3)

$$
Q_{a(\text { min. })}-Q_{b(\text { min. })}=2 Q
$$

That is, the minimum Q factor for the coils in Fig. 1.8 is
$Q_{\text {min }}=2 Q=2\left[\frac{\beta 2 \mathrm{MHz}}{8 \mathrm{MHz}}\right]=8$
$Q_{\text {a (min }}$ and $Q_{b(\min ,)}$ could also be contal of each arm 'a' and 'b' respectively. Another useful relation between the circuit Q and the coil values (App.E1), is

$$
2 Q=2 \frac{\omega_{0}}{\omega_{3}}=\sqrt{\frac{L_{\mathrm{b}}}{L_{\mathrm{a}}}}
$$ equation becomes

$$
2 Q=2 \frac{\omega_{o}}{\omega_{3}}=2 \sqrt{\frac{L_{\mathrm{b}} / 2}{2 L_{\mathrm{a}}}}
$$

ig. 18

Components

$\left(2 L_{\mathrm{a}}\right)$-three turns of 0.4 mm dia. enamelled copper wire on Neosid forme 52 . W . Core $4 \times 0.5 \times 10 \mathrm{~mm}$, grade ($L_{\mathrm{b}} / 2$) -12 turns of 0.2 mm dia. wire, as $\mathrm{C}_{a} / 2$) and ($2 \mathrm{C}_{\mathrm{b}}$)-polystyrene capaci tors.
$\mathrm{H}-$ two bifilar toroidal windings of 0.2 mm dia. enamelled copper wire on Neosid. The bifilar wire is threaded twice through the bead hole.

Notes

Only equations 1.3 and 1.1 were use derive the components values, be

WIRELESS WORLD, AUGUST 1979
Elimination of the hybrid transformer To reduce number of components the hybrid transformer H may be eliminated
in two ways. The first one is to combine in two ways. The first one inctance $2 L_{a}$. This is shown in Fig. 1.9 where $2 L_{a}$ is

Fig. 1.9
provided with a centre tap. In the present example, where there are only three turn on ($2 L_{\mathrm{a}}$), this modification does not work out well.
similar results to Fig. 17 is to centre tap the capacitor ($\mathrm{C}_{\mathrm{a}} / 2$), Fig. 1.10.

Fig. 1.10

Bartlett's bisection theorem (appen dix F) shows that Fig. 1.10 is a deriva tion of the lattice in Fig. 1.1.

Cascading stagger-tuned notch units

Cascading units increases the rejection bandwidth without appreciably increasing the 3dB bandwidth. Cascading is possible due to the fact that each unit
input and output impedance is a constant resistance at all frequencies.
The effect of two cascaded units is shown in Fig. 1.11. One unit is tune 0.35 MHz above 32 MHz . This stagger tuning produces a loss of 20 dB , of each unit at 32 MHz , giving a total of 40 dB rejection. The bandwidth at -40 dB is
more than 0.7 MHz while the 3 dB bandwidth increased to about 10.7 MHz .

Fig. 1.11

Thus, while the -40 dB rejection band-
Thus, while the -40 dB rejection band-
width has increased by more than ten times, the - 3dB bandwidth has in-
creased only by 1.53 times.
The practical results of two cascaded
notches, of Fig. 1.10 separated by 0.7 MHz gave an increase of f_{3} by 1.57 imes, from 7 MHz to 11 MHz , and an ${ }_{0}$ increase of 40 by

Example 2: Constant resistance bridged-T

 notch filter (not null)Equations 1.1, 1.2, 1.3 and 1.6 hold good also for constant resistance bridged-T, non-null, notch filter shown in Fig. 2.1. At resonance frequency ω_{0} the circuit shown in Fig. 2.2. The attenuation N gives the notch depth where $N=V_{1} / V_{2}$ at ω_{0}. It is clear that for high notch rejection, resistance ($R_{\mathrm{b}} / 2$) must be very small and resistance ($2 R_{\mathrm{a}}$) very
large, compared to 75 ohm . T, compared to 75 ohm.
coil $L_{\mathrm{b}} / 2$ must possess a high Q , where $\mathrm{Q}_{\mathrm{b}}=\omega_{0}\left(L_{\mathrm{b}} / 2\right) / R_{\mathrm{b}} / 2$
\square
Also, no other resistive component is to Also, no other in series with coil $L_{b} / 2$. To achieve a maximal value for $2 R_{a}$, coil $2 L_{a}$ must possess a high Q_{a} to result in high dynamic impedance D, wher

$$
D=Q_{\mathrm{a}} \omega_{\mathrm{o} 2} L_{\mathrm{a}}=2 R_{\mathrm{a}} \quad 2.2
$$

Also, no other resistive component to be added in parallel to $2 L_{\mathrm{a}}$. Appendix E2 resistance of equation 1.2 leads to the requirement that the Q values of both

Fig. 2.1

Fig. 2.2
example 1 coil $L_{\mathrm{b}} / 2$ has 12 turns and $2 L_{a}$ has three turns. To achieve a high Q with three turns is not easy. Hence, a tunable auto-transformer is employed for ($2 L_{\mathrm{a}}$) increasing

Fig. 2.3
The circuit is shown in Fig. 2.3. As the auto-transis squared. $0.09 \mu \mathrm{H} \times 3^{2}=0.81 \mu \mathrm{H}=2 \mathrm{~L}_{\mathrm{a}} .9=18 \mathrm{~L}_{\mathrm{a}}$ The tuning capacity is therefore reduced by the same multiple,
$270 \mathrm{pF} \div 3^{2}=30 \mathrm{pF}=\left(\mathrm{C}_{\mathrm{a}} / 2\right) \div 9=\mathrm{C}_{\mathrm{a}} / 18$
The components used are the same as for Fig. 1.8 except that ($18 L_{\mathrm{a}}$) windings are made with 0.2 mm dia. enamelled Q meter is about $Q=100$. The notch maximum attenuation N is found from Fig. 2.2 bridged-T attenuator (see ref. 4).

Thus, $N=\sqrt{\frac{2 R_{\mathrm{a}}}{R_{\mathrm{b}} / 2}}+1$
Substituting $2 R_{\mathrm{a}}$ and $R_{\mathrm{b}} / 2$, from equaions 2.2 and 2.1 respectively, in equa-
become
$N=Q_{a} \sqrt{\frac{2 L_{\mathrm{a}}}{L_{\mathrm{b}} / 2}}+1$
2.5
where $Q_{a}=Q_{b}$ from equation 2.3. Exchanging the coils values ratio, under the square root, with the required radial frequencies ratio (ω_{3} / ω_{o}) from
equation 1.6. N becomes an expression which enables estimating the notch depth from the notch requirements.
Thus $\quad N=Q_{\mathrm{a}} \cdot \frac{\omega_{3}}{\omega_{0}}+1$ 2.6

As $Q_{a}=Q_{b}=100$ for coils of Fig. 2.3 $N=26$ or 28.3 dB . The measured value of N is found to be 29 dB
Equation 2.6 may also be written in terms of notch Q, from equation 1.6
where $Q=f_{d} / f_{3}$ where $Q=f_{o} / f_{3}$

$$
N=\frac{Q_{a}}{Q}+1
$$

2.7
that, while Q_{a} must equal Q_{b} to have constant resistance impedance, $Q_{a}=Q_{b}$
must be much larger than Q to achieve large rejection at $f_{\text {o }}$.

Appendix A. General expression for null notch filter

 The general expression for an RLC null$\frac{e_{o}}{e_{i}}\{p\}=\frac{\omega_{0}{ }^{2}+p^{2}}{\omega_{0}{ }^{2}+k p+p^{2}}$
where e_{i} is input voltage, e is output voltage ω_{0} is notch radial frequency and $p=j \omega$. Hence
$\frac{e_{0}}{e_{\mathrm{i}}}\{j \omega\}=\frac{\omega_{0}{ }^{2}-\omega^{2}}{\omega_{0}{ }^{2}-\omega^{2}+j \omega k}$
(Replace ω by another variable d, which is half the notch width (Fig. A.1),
$\omega=\omega_{0}-d$, where $d \ll \omega_{0}$) $=\omega_{0}-d$, where $d \ll \omega_{0}$.
$=\frac{j \omega k}{1+\frac{j \omega k}{\omega_{0}^{2}-\omega^{2}}}=\frac{1+\frac{j\left(\omega_{0}-d\right) k}{\omega_{0}^{2}-\left(\omega_{0}-d\right)^{2}}}{}=$
$=\frac{1}{\left(\omega_{0}-d\right) h}$
$1+j \frac{\left(\omega_{0}-d\right) k}{\omega_{0}^{2}-\left(\omega_{0}^{2}-2 \omega_{0} d+d^{2}\right)}$
$=\frac{1}{1+j \frac{\left(\omega_{0}-d\right) k}{2 d\left(\omega_{0}-d / 2\right)}} \approx \frac{1}{1+j \cdot \frac{k}{2 d}}$
For 3-dB points of insertion loss
$\left|\frac{e_{0}}{e_{i}}\right|=\frac{1}{\sqrt{2}}$ or $\left|\frac{e_{i}}{e_{\mathrm{o}}}\right|=\sqrt{ } 2=\left|1+j \frac{k}{2 d}\right|$
Thus, $k / 2 d=1$.
$2 d$ is the 3 dB ba
$2 d$ is the 3dB bandwidth ω_{3}
$\omega_{3}=2 d=k$
A. 3

Hence k, the coefficient of p in equation A.1, depicts the 3dB bandwidth. Equation A. 1 may be re-written as

$$
\frac{e_{o}}{\cdot e_{i}}\{p\}=\frac{\omega_{0}^{2}+p^{2}}{\omega_{0}^{2}+\omega_{3} p+p^{2}}
$$

and equation A. 2 a
A. 4

Fig. B. 1
From Fig. 1.1 and B. 1
$\mathrm{b}=R_{\mathrm{b}}+p L_{\mathrm{b}}+\frac{1}{p C_{\mathrm{b}}}$
$\frac{e_{0}}{e_{\mathrm{i}}}=\frac{1}{1+j \omega_{3} / 2 d}$
$5 \quad \frac{1}{a}=\frac{1}{R_{\mathrm{a}}}+\frac{1}{p L_{\mathrm{a}}}+p C_{\mathrm{a}}$
At $\omega_{0}, 2 d=0$ and $\left|\frac{e_{0}}{e_{\mathrm{i}}}\right|=0$
i.e. no output at ω_{0}.

When d is very small,
$\left|\frac{e_{0}}{e_{i}}\right| \approx \frac{1}{\omega_{3} / 2 d}=\frac{2 d}{\omega_{3}}=\frac{2\left(\omega_{0}-\omega\right)}{\omega_{3}}$
as $d=\omega_{o}-\omega$ lope of $-2 / \omega_{3}$. ositive slope of $2 / \omega_{3}$.
This is illustrated
$Z_{\mathrm{in}}=\sqrt{Z_{\mathrm{oc}} \cdot Z_{\mathrm{sc}}}=R$

By inspecti
By inspection,
$Z_{\mathrm{oc}}=(a+b) / 2$
$z_{\mathrm{sc}}=2 \frac{a b}{a+b}$
$\therefore Z_{\text {in }}=\sqrt{Z_{\mathrm{zc}} \cdot Z_{\mathrm{sc}}}=\sqrt{a \cdot b}=R$
or $\left(Z_{\text {in }}\right)^{2}=R^{2}=a \cdot b$

Equation A. 6 is a straight line with a
reater the response at frequencies quater than $\omega_{0}, d=\omega-\omega_{0}$ which gives equation A. 6 a negative sign and a
This is illustrated in Fig. A. 1 and provides the explanation for Fig. 1.6 (se

Appendix B Constant resistance lattice
where $Z_{\text {in }}$ is in in ${ }_{\text {sc }}$ B. impedance to be equa to the terminating resistance $R, Z_{o c}$ is input impedance when R is open-circuit, $z_{s c}$ is input impedance when R is short

MICROPROCESSOR WORKSHOPS

The microprocessor revolution is well underway. And with that revolution comes a challenge to you, the designer. A challenge to rethink certain design concepts; to comprehend microprocessor software development; to understand microprocessor system integration.

The challenge, in short, is to learn. To learn in order to do your job more
productively, and to take advantage of the design opportunities the microprocessor To help you meet the challenge Tektronix are providing two types of Workshop:

Workshop One
Microprocessor Design Workshop The emphasis is on software development and system
integration Atter five days of demanding, stimulating work, y inlegration. Ater tive days or demananing, stimulating work, youll be
able to complete a software design from tiowcharting through debugging: operate the TektronixMicroroctecsor Develop
Lab: and understand and solve the problems involved in integrating softwarie

$$
\begin{aligned}
& \text { Attunde Profile } \\
& \text { Has inited exp }
\end{aligned}
$$

system.
Has some e programming experience, but probably not with
microrocessor assembler language
microprocessor assembler language.
Wants an introduction to to
Wanis anintiosuction tit the use of a complete microprocessor
development system and itr roin the desian procecss.
When
When you've completed the Workshop youll be a amore

organization practice in implementing a microprocessor design;
and hours t thands-on experience with the Tektonix Development
Lab and the 8080.
Duration: 5 days. Cost: 8250 .
Workshop Two
Microprocessor Development Lab
This three day advanced Workshop emphasizes the use of the
 the basic principles of microporccessor software, programming, and
deesign roganiziton Ratier Workhop time is devoted to hands
exp
 learn its operation and its rolie in hardwar
developmentand system integration.
Attendeee profilie:
Has designed with one or more microorocessors.

$$
\begin{gathered}
\text { Has no } \\
\text { system. }
\end{gathered}
$$

Has usesigned witish one or more microprocosessors.
Hebsed microprocessoro development system
or mini-computer.
Has programmed a microprocesssor in assembler language.

of Tektronix Microprocesssor Development Lab and in applying that
knowledge to to his design tasks.
kuration: 3 days. Cost: $\ddagger 200$

Whether you choose the five or three day Workshop you'll find the emphasis is truly hands-on. We limit the number of delegates to 12 and there are 4 Tektronix 8002A systems available, which constitutes some £60,000 worth of equipment. The 8002A is capable of emulating- TMS 9900, SBP 9900, Motorola 6800 Intel 8080 and 8085, Zilog Z80A, Fairchild F8, Mostek 3870, RCA 1802 but becaus uction and work.

May 14-18* * une 11-15, July 16-20,*Sept 4-6, Oct 1-5, Nov 12-16
*Dec. 11-13. *Reters to Workshop two.
If you are interested, why not send for our comprehensive
Workshop brochure, it's quite free.

Tektronix
 сомMTTED To EXCLLLenc:

68

POWERTRAN

PS1 Comp 80. 280 Based powerful scientific computer Design being published in Wireless World - NOW!

The kit for this outstandingly pratical design by John Adams being published in a series of articles in Wireless World really is complete!

Value Added Tax not included in prices

UK Carriage FREE
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE ANDOVER ANDOVER HANTS SP10 3NN (0264)64455

Colour synthesizer design for the PAL system

Low-cost equipment for amateurs or schools
by N. C. Roberts, B.Sc

The conventional approach to colour synthesis involves the use of standard colour matrix circuits. The individual components of the colour waveform are generated separately and fed to th
matrix circuits. The result is an matrix circuits. The result is an instrument which, while costing less than
a colour television camera, is still outside the scope of any amateur system. The equipment described here generates a resultant colour waveform directly,
without the use of matrix circuits. without the use of matrix circuits,
drastically reducing the cost and complexity of the finished instrument. The device is completely compatible with the PAL (Phase Alternating Line) colour system used in Britain.

The article is not intended as detailed constructional notes, but outlines the results of an investigation performed by the author into a new principle. The outcome was a working prototype de-
sign which the reader may wish to extend to suit his individual needs.
Before the new method is described, it is necessary to discuss the operation of the PAL system in detail

The PAL system
A colour television camera will be considered as a convenient source of colour video information.
The incoming light image from the lens is split into three primary colours, rors. These three colours are chosen because virtually any colour can be made up by combining these in suitable proportions. It should be noted that addition on the display of a colour television receiver; for example, yellow is made up from a combination of red and green which, due to the spectral sensitivity ove of the eye, is sensed as yellow.
Each of the three colours is focused onto a camera tube, usually a Plumbicon, which has a maximum spectra response at that colour. The outputs proportions
proportions
30% red $+59 \%$ green $+11 \%$ blue to give a component called Y, the luminance or monochrome signal which is the only signal used by a monochrome receiver. These propor-
tions are chosen to give a good white, called 'luminance \mathbf{C}^{\prime} white, from the camera tubes.

To economize in bandwidth in the final transmitted signal, colour difno brightness (luminance) information is transmitted in the chrominance channels. Difference signals ($\mathrm{R}-\mathrm{Y}$) and (B-Y) are formed by subtracting the signals respectively. Only two signals are needed because the third, (G-Y), can be derived in the receiver from the other two. of the luminance transmission consists by synchronizing pulses, used to lock the receiver's scan circuits to those of the camera. A colour signal, however, the receiver. As well as the luminance or Y signal and synchronizing pulses, the ($\mathrm{R}-\mathrm{Y}$) and (B-Y) signals must be transmitted, and yet must not interfere with the Y signal, so as to be compatible with
monochrome receivers. To this end, a subcarrier is used, and this is added directly onto the luminance signal, as in Fig. 1. The subcarrier is phase modulated for colour hue, and amplitude modul
The choice of subcarrier frequency is important. It must be within the video range of 0 to 5 MHz , and it must not produce an objectionable dot pattern on a monochrome receiver. The chosen
frequency is about 4.43 MHz , the reasons for which will appear later in the discussion.
It is uneconomic in terms of transmitter power to transmit the subcarrier

Fig, 1. Colour television waveform Fig, 1. Colour television waveform,
showing colour burst and subcarrier in
area of colour.
and its associated sidebands, so the subcarrier is suppressed before transmission and only the sidebands are transmitted. In the receiver, therefore, he subcarrier has to be re-inserted local subcarrier oscillator being locked to the transmitter's subcarrier. To this end, a small burst of subcarrier is inserted into the back porch of the video cycle of the transmitter's subcarrier This is known as the colour burst. The suppressed-carrier modulation technique is used for two subcarriers of the same frequency, but differing in
phase by 90°. The ($\mathrm{B}-\mathrm{Y}$) signal is modulated on one carrier, and the ($\mathrm{R}-\mathrm{Y}$) signal on the other, the basic ($\mathrm{R}-\mathrm{Y}$) subcarrier leading the (B-Y) subcarrier by 90°. The two signals are then combined to produce a resultant which
varies in amplitude and phase, and this is then added to the video waveform, as. seen in Fig. 1.
In some colour systems, for example, the American NTSC system, the phase of the colour burst and the basic phase
of the colour subcarrier is the same on every line. This system, however, is prone to differential phase distortion, caused by slight subcarrier phase shifts brought on by different transmission path lengths, and giving rise to incor-
rect hues. The PAL system helps to overcome this by changing the phase of the colour burst on every other line by $\pm 45^{\circ}$ about 180° to the (B-Y) carrier. The (B-Y) carrier relative phase remains unchangei, but the R-Y) subcarier is is seen in Fig. 2, the (B-Y) axis is called the U axis and the ($R-Y$) axis is called the V axis on a vector diagram. Fig. 3

tial phase distortion - ϕ° in the dia-
gram. In the receiver, the signal with $-V$ phase is inverted to bring it into the same phase as lines with $+V$ phase. The resultant vector over two adjacent lines is the original transmitted subcarrier phase. This does give rise to a slight
decrease in saturation, but this effect can be minimised in the receiver,
The subcarrier frequency chosen is a
multiple of line frequen, multiple of line frequency, plus a quarter of line frequency, to offset the receiver. In addition, by adding another half cycle per field $(25 \mathrm{~Hz})$, dot pattern interlacing is achieved, making it even less visible. The final figure for the
British system becomes:
$\left[\frac{567}{2}+\frac{1}{4}\right] 15625+25(\mathrm{~Hz})=4.43361875 \mathrm{MHz}$.
The figure of $567 / 2$ times line frequency as the basic subcarrier frequency is chosen so that the chrominance side-
bands intermesh with the luminance sidebands, and do not interact.
The dot pattern arises monochrome receiver because the subcarrier sine wave modulated on the
video waveform is seen by video waveform is seen by the receiver The effect is only noticed on areas of high saturation. The pattern does not appear on a colour picture because the colour subcarrier is filtered out before
the luminance is displayed. the luminance is displayed. signals are obtained and added to the
brightness component of the waveform in the colour picture tube

Thour synthesis

The concept of colour synthesis is to use a monochrome video signal, such as one obtained from a monochrome television camera, to produce a colour picture.
The monochrome signal consists

Fig. 2. Colour subcarrier vector

diagram.

Fig. 3. Resultant formed in receiver same phase as transmitted vector.

Fig. 4. Colour subcarrier generator circuit.

Fig. 5. Circuit to provide outputs leading and lagging by 45° on colour subcarrier to produce colour burst.

WIRELESS WORLD. AUGUST 1979 luminance information only, and therefore a colour synthesizer cannot repro-
duce the actual colours of the duce the actual colours of the viewed
scene, but will add colours as desired by the operator. This technique may be considered as painting the colours onto a black and white scene. A synthesizer
is of particular use with is of particular use with captions, where view the caption, and the caption's video converted to colour using a synthesizer. Furthermore, the colours can be changed at will.
Colour synthesizers normally have preset red, blue, and green signals,
which may be used to colour areas of the picture. These signals, which normally consist of d.c. levels, are fed to a conventional PAL coder, and correspond to areas of constant colour. The
expensive colour camera optics, video pre stages, and three camera tubes are therefore dispensed with. However, the PAL coder is still required to process the signals, and convert them into a form suitable for transmission; this con-
stitutes a large proportion of the cost of a colour synthesizer. The author decided to try generating the subcarrier resultant directly, thus obviating the need for a PAL coder, but retaining television equipment. It was decided that the colour hue determining factor at any point of the picture would be the luminance amplitude at that point; a particular particular hue of the electronically generated colour. The range of colours obtainable over a luminance range hould be adjustable.
mined by the amplitude of is detersubcarrier, the saturation is controlled via a subcarrier variable-gain amplifier. The generated subcarrier passes through fixed phase-shift networks and gating circuits to generate the colour
burst. The colour hue is determined by the phase of the subcarrier; hence, a voltage-controlled phase-shift unit is employed as the colour hue determining
To be

To be compatible with the PAL system, the phase of the subcarrier has to change on every other line. It has already been stated that with the PAL system, the phase of the (R-Y) subcarrier is inverted on every other line, while changed. This can be written mathematically as
$A \sin \omega t+B \sin \left(\omega t+90^{\circ}\right)$
where $A \sin \omega t$ represents the ($B-Y$) subcarrier and $B \sin \left(\omega t+90^{\circ}\right)$ represents the $(\mathrm{R}-\mathrm{Y})$ subcarrier on lines with +V
phase. A and B are the relative amplitudes of each. Similarly, we can write
$A \sin \omega t+B \sin \left(\omega t+90^{\circ}\right)+180^{\circ}$
(2)
for lines with -V phas

WIRELESS WORLD, AUĢUST 1979
Now, since
$P \sin \Omega+Q \cos \Omega=R \sin (\Omega+\mu)$
where
$R=\sqrt{P^{2}+Q^{2}} ; \mu=\tan ^{-1} Q / P$,
(1) becomes
$A \sin \omega t+B \sin \left(\omega t+90^{\circ}\right)$ $=A \sin \omega t+B \cos \omega t$
where $C=\sqrt{A^{2}+B^{2}} ; \quad \theta=\tan ^{-1} B / A$,
and (2) becomes:-
Asin $\omega t+B \sin \left(\omega t+270^{\circ}\right)$
$=A \sin \omega t-B \cos \omega t$
where $\quad D=\sqrt{A^{2}+(-B)^{2}}=C$;
$\alpha=\tan ^{-1}-A / B$
Hence (2) is
$A \sin \omega t-B \cos \omega t=C \sin (\omega t-\theta)$.
Therefore, on lines with $+V$ phase, the resultant subcarrier is
$C \sin (\omega t+\theta)$,
and on lines with -V phase, the resultant
$C \sin (\omega t-\theta)$,
where C is a factor controlling colour aturation, and θ controlling the colou hue.
resultant subcarrier can be sim phase advancing about a mean value on one line, and phase retarding on the next. This is the principle used in thi design.

Design

The synthesizer can be considered in eight distinct stages.
Oscillator. The subcarrier maste oscillator is crystal-controlled and is designed around a standard colour sub carrier crystal used in domestic colou oscillator is of the Pierce type, with source follower f.e.t. stage to minimize loading effects. The stage is fed from a stabilized power supply to improve tability. The phase or the output sub carrier from this unit is assigned the as the reference phase about which all thers are considered.
Fixed phase-shift. The phase of the the - U axis. Figure 5 shows two net works which use single RC and CR networks to provide the $\pm 45^{\circ}$ phas hifts, the resultant being fed to source follower buffer stages. The outputs capacitively coupled to f.e.t. switches in the burst gating unit. The characterisics of the fixed phase shift unit are seen in Fig. 6 .
ariable phase shift. At the heart of the system is the voltage-controlled phase-
shift unit. In the circuit of Fig. 7, anti-
phase signals are fed into the input ports of the network. If resistor R is increased
from zero to infinity, the phase of the output changes by 180°. If the impedance to both input ports is the same, and low compared with the reactance of capacitor C at the operating frequency, amplitude is essentially constant over the entire phase change. This is the basis of the voltage-controlled phaseshift unit. If R is replaced by an f.e.t., controlling the gate voltage controls the
source-drain resistance and hence the output phase. Figure 8 shows the circuit of the voltage-controlled phase-shift network.
The input 4.43 MHz . from the subcarrier generator is fed into a transformer, which spits the phase of the signal to f.e.t.s in parallel provide a more linear phase-shift characteristic. The two phase-shift stages in cascade give nealtage range of zero to -3.5 V on the voltage range of zero to -3.5 V on the

Fig. 8. Voltage-controlled phase-shifter for subcarrier, phase of which determines hue of picture.
 Fig. 6. Waveforms from circuit of Fig. 5 .
Top trace is input, middle trace leading and bottom output lagging.

Fig. 7. Basic phase-shift element.

f.e.t.s. Source follower stages are between the phase shift stages to prethe output of the $R C$ system, yet provide a low impedance transmitted through the transformer to the input of the $R C$ system. The $10 \mathrm{k} \Omega$ potentiometer on the output controls the amplitude of the
subcarrier and hence the colour satura tion. Figure 9 shows the characteristics of the unit. The operating range is chosen to be from -2 V to -3.5 V and this is achieved by adjusting the gain of the

Sync. separator. In order that the burs may be gated in at the correct position, and to change the phase of the subcar rier at line requenon, synchronizing pulses from the incoming video waveform. In Fig 10 , the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor is normally

Fig. 9. Characteristics of Fig. 8. circuit Top trace is input; lower traces show phases when control voltage is set at phases
$-\mathbf{- 3 . 5 V}$.

Fig. 10. Circuit to extract sync. pulses from composite video.

Fig. 11. Burst gating and line-frequency
divider.

Fig. 12. Chroma threshold gate.

ig. 13. Colour range amplifier and PAL inverter. Outputs are selected by f.e.
witches in Fig. 11 to control voltage-controlled phase shifter of Fig. 8 +4.5 V with respect to the collector when the level of the video is low enough does the transistor conduct. This low level is only reached during the negative-going synchronizing pulses. Hence, positive-going synchronizing
pulses appear at +5 V peak on the collector of the transistor, and are compatible with standard t.t.l. integrated ircuits.

Burst gate and line dividers. Synchronizing pulses are fed to the gating generator in Fig. 11. The half-line frequency switching-pulse generator is simply a t.t.l. bistable element, the burst monostables. The colour burst is two ong; occurring $0.8 \mu \mathrm{~s}$ after the line synchronizing pulse. The first monostable, triggered on the negative edge of the incoming pulses, provides the $0.8 \mathrm{\mu s}$ delay, its output pulse being inverted able, which produces the burst gating pulse.
The half line frequency pulses selec the appropriate burst phase, which is the correctly timed and phased colour burst.

Threshold gate. To prevent colour in formation from entering the black leve and synchronizing pulse region, and also the peak white region, a threshold
detector is used, as shown in Composite video is fed to the level detector and the two threshold levels are set on the potentiometers. The output controls an f.e.t. switch which gates-in

Amplifier and inverter. The control signal for the voltage-controlled phaseshift network is derived from the video signal in the circuit of Fig. 13. The video signal is amplified in a variable-gain operational amplifier configuration range of colours obtained on a picture. Another operational amplifier is used as an invertor and the two signals are fed to f.e.t. switches, which select the direct
or inverted signal to control the phaseor inverted signal to control the phase-
shift network. The chroma phase switch $\left(\mathrm{Sw}_{1}\right)$ selects the phase of the control signal with respect to the colour burst: thus the basic colour of the picture (in the dark regions) can be changed

Video output. All the signals - the video, colour subcarrier, and colour burst - are combined in the video output amplifier of Fig. 14 The signals are fed to a common base amplifier which suppege to present 75Ω. A block diagram of the synthesizer is shown in Fig. 15.
It should be noted that with this

a monochrome receiver.

Fig. 17. Monochrome (top) and colou (bottom) video waveforms.

Fig. 15. Complete block diagram of the equipment.
system, the subcarrier is not sup pressed, but this means that additiona formation is conveyed to the receiver, where it is filtered out.

Testing

The complete unit may be connected to monochrome television camera to enable the subcarrier pattern to b viewed.

Ater switching the unit on, with the amera viewing a scene, the saturation control may be advanced until the sub carrier dot pattern is visible, as in Fig . Adjusting the colour range contro showing that the phase of the subcarrier has changed.
A comparison of the input and output waveforms of the device can be seen in pears after the line synchronizing pulse, and where the video region is slightly more indistinct, showing the presence of the subcarrier.
If the previous tests prove satisfac ory, the unit may be connected to our range and saturation control adjusted to give a good colour range whe viewing the scene. The threshold con rols are adjusted so that they just do peak white: this is the correct setting of he controls for an all colour picture.

For pictures of high contrast, for example, a black caption with white obtained. By changing over the chroma phase switch, the dark regions of the picture may be changed from red to blue.

There is a tendency on certain scenes for the colour to flicker at the top of the picturking. This is the system whereby
blank the burst is blanked off for the first few lines at the beginning of a field to allow the synchronizing fircuts to settl pulses. The unit is capable of generating al the colours obtainable with the PAL system, with an even distribution of the colour, throughout the picture. the to a sudden change of luminance with no spurious effects at the transition edge.
The results obtained with these simple circuits were very encouraging The unit is intended as a low cost device for providing colour on an amateu system, or for schools. The presence o increases a caption or diagram greatly it would be most useful in an educa tional establishment.
The author wishes to acknowledg
the assistance of the staff of the University of Bath School of Physics, and, his help and encouragement throughout the project.

The author
Mr Roberts took an honours degree in applied physics at the University of Bath in
1975, subsequently working for two and 19 hal, subsequently working tor two and
a half years at Marconi Space and Defence Systems on computers and automatic test equipmen. At the present time he is a civ include the design of high-fidelity audio equipment and home computer systems, on which he occasio
groups of enthusiasts.

RC networks: simple timing equations
by Peter Williams, Ph.D. Paisley College of Technology

In determining the time taken between successive switching points in an astable or monostable, across the resistor and a very general result is obtained relating the time interval to the ratio of the voltages across the resistor at the beginning and end of the period. A step voltage is applied to a CR network in which the capacitor is initially discharged. The resistor voltage thus varies from V to zero
as the capacitor charges from zero to V. Substituting into the expontial as the capacitor charges from zero to V . Sussituting into the exponential equation relating time and
voltage it is then found that the time taken for the voltage across the resistor to change from, V , V is given by $t_{2}-t_{1}=\tau \ln \left(V_{1} / V_{2}\right)$. This result remains true even if the capacitor is charged to some initia value V_{c} as in the equations v is simply replaced b $v \vee V V_{c}$ but again cancels out in determining the
time interval. This result is of such usefulness that it is worth time interval. This result is of such usefulness that it is worth stating explicity: if a constant voltage is
maintained across a series $C R$ circuit the time taken for the resistor voltage to change from V to V depends only on the time constant and the ratio of $\mathrm{V}_{1} / \mathrm{V}_{2}$

The advantage of this approach is that most monostable and astable circuits can be subdivided into just such a CR section or sections and active circuitry to sense and take action at particula
voltage levels. They are then covered by this result and the corresponding pulse widths and requencies can be determined by isolating the values V_{1} and V_{2} across the resistor at the beginning and end of the period. This bypasses the often lengthy algebra in which the exponential charging properties are re-established for each individual circuit, and unifies the treatment of almost all circuits
of practical interest. As far as this calculation is considered, only the voltage across the CR network is of interest, but in many circuits the capacitor appears with one end grounded and the diagram show how the information can be derived from the graph of the capacitor voltage; the resistor voltage has
to be the difference between the apolied voltage and that across the capaito . That the resistor to be the difference between the applied voltage and that across the capacitor. That the resistor
voltage is the key to this simple relationship is less surprising when it is realized that it is on this voltage that the charging current depends, i.e. the time interval depends on the ratio of the charging current

As an example of the application of this idea consider the standard transistor multivibrators. Their detailed rreatment is left till later, but their common property is that a capacitor is connected to a capacitor is clamped close to zero by the base-emitter of aero. Prior to that drop the other end of the hat base from zero to $-V_{c c}$. If the charging resistor R_{B} is returned to a bias voltage $V_{B E}$ then the magnitude of V , is given by the sum of the collector and base supply voltages. Switching is assumed鲬. Substitution into the time interval relationship gives the result usually obtained. By extension $V_{\text {Bl }}$.
allowance for base and collector saturation voltages can be seen to modify the values of V_{1}, and V_{2} but till allow the use of the same time interval equation. Once that equation is established and accepted the insertion of the values of V, and V_{2} leads to a quick and convenient solution

The advantage of this approach can be illustrated graphically: a general exponential waveform is drawn representing the voltage across the capacitor. In the case of the two-transistor astable and a unijunction astable circuit start with the capacitor discharged but charging to $2 / 3$ of the applied voltage before switching (the unijunction is often designed to switch slightly earlier at 63% of the supply corresponding to In $\left(N_{1} / V_{2}\right)=1$ i.e. resulting in a period $\left.T=\tau\right)$. A 555 astable cycles between
$V / 3$ and $2 V / 3$ with a $2: 1$ ratio of the resistor voltages. Using this graph any other circuit that depends on an RC charging cycle can be evaluated. The switching points are noted, the voltage across the resistor is calculated for each case and the ratio of the voltages leads to the time interval.
The graph can be redrawn directly in terms this form since many circuits involve a grounded capacito.
are discussed in more detail later The first to be evar anumber of well-known circuits some of which taken for the output to rise from 10% tirst to be evaluated is the rise time of an RC section, the time is the time constant. Both the 555 monostable and the uniiunction oscillator he cycles, with the discharge time for the unijunction being very short. (The 555 monostable can be
adjusted for pulse width by reducing the adiusted for pulse wid
circuits all have $\sim 2: 1$ ratio for the resistor voltagos voltage externally at pin 5 .) The final group of values. Therefore each has a time interval of ~ 0.69 т. For the astable case a complete period consists of two normally equal time intervals i.e. $\mathrm{T}=2 \times 0.69 \mathrm{\tau}$ and $1 / \mathrm{T}=1 / 1.38 \mathrm{~T}$. For op.amp astables the
thresholds depend ihrestolds depend on ese external resistor values. Once these thresholds have been calculated the
corresponding voltages across the resistors follow and the same time

RC networks: simple timing equations

$$
\begin{aligned}
& \text { For the capacitor } Q=C V \\
& \quad \frac{d Q}{d t}=C \frac{d V}{d t} \\
& \text { But } \frac{d V}{d t}=-\frac{d V_{R}}{d t} \text { for any constant applied voltage and } \frac{d Q}{d t}=1=V_{R} / R \\
& \therefore \frac{d V_{B}}{d t}=-\frac{V_{R}}{R} \\
& \frac{d V_{R}}{d t}=-\frac{V_{R}}{C R}=-\frac{V_{R}}{\tau}, \frac{d V_{R}}{V_{R}}=-\frac{d t}{\tau}
\end{aligned}
$$

where if the values of V_{R} at t_{1} and t_{2} are V_{1}, V_{2} respectively the

The result appliess regardless of whether the R or the C is grounded i.e. of whether it appears to be a CR or an $R C$ network provided only that the iotal voltage across the circuit remains constant for the period of interes
the time in The time

- For the particular case of traditional two-transistor monostables astables, the voltages V_{1} and V_{2} correspond to the instant immediately
 he base potential recovertials of V_{BB} and $-\mathrm{V}_{\mathrm{Cc}} ; \mathrm{t}_{2}$ of V_{BB} and 0 .

$$
\begin{aligned}
& \mathrm{t}_{2}-\mathrm{t}_{1}=\mathrm{F} \log _{\mathrm{e}} \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}} \\
& v_{1}=v_{B B}-\left(-V_{c \mathrm{c}}\right) \\
& \text { Hence } t_{2}-t_{1}=\tau \log _{0} \frac{V_{1}}{V_{2}}=\tau \log _{0}\left(1+\frac{V_{c c}}{V_{B B}}\right)
\end{aligned}
$$

When allowance is made for the different saturation and threshol voltages of the devices the form of the equation is unchanged but the
values $V_{\text {a }}$ and V_{2} are modified. Assume the collector voltage falls from alues V_{1} and V_{2} are modified. Assume the collector voltage falls from
$V_{C C} \rightarrow V_{C E 1}$ (sat). Hence the base is driven down to $V_{B E 2}$ (sat) $-\left(V_{C C}\right.$. $V_{C E}^{c c}(\operatorname{sat})$).

$$
\begin{aligned}
V_{1} & =V_{\text {BB }}-V_{\mathrm{BE}}(\mathrm{sat})+\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}(\mathrm{sat}) \\
& =V_{\mathrm{BB}}+\mathrm{V}_{\mathrm{CC}}-\left(V_{\mathrm{BE} 2}(\mathrm{sat})+\mathrm{V}_{\mathrm{CEE}}(\text { sat) })\right.
\end{aligned}
$$

Similarly the next transistor occurs not at 0 but at $V_{\text {Be2 }}$ (th) the voltage at which the transistor just begins to conduct
$V_{2}=V_{\text {BB }}-V_{\text {Be2 }}$ (th).
A number of
practical circuits
have very simple values of V_{1}, V_{2}, Monostables using the $555 \mathrm{i} . \mathrm{c}$. timer have
from zero and triggering at $2 \mathrm{~V} / 3$. Hence

$$
\begin{aligned}
\left.\begin{array}{rl}
v_{1} & =v / 3 \\
v
\end{array}\right\} \begin{aligned}
t_{2}-t_{1} & =\tau \log _{9} 3 \\
& =1.1 \tau
\end{aligned}{ }^{2}=v / 3
\end{aligned}
$$

Unijunction astables fire when the input voltage reaches 63% of the suppl
i.e. $\left.\begin{array}{l}v_{1}=v \\ V=0.37 \mathrm{~V}\end{array}\right\} \begin{aligned} & t_{2}-t_{1}=\tau \log _{8}(1 / 0.37) \\ & \\ & \approx \tau .\end{aligned}$

An astable using the 555 has its voltage cycling between $\mathrm{V} / 3$ and $2 \mathrm{~V} / 3$ defining each portion of the cycle as of duration

$$
-t_{1}=\tau \log _{2} 2=0.69
$$

A monostable based on a c.m.o.s. D.type flip-flop ends its timing cycle when the capacitor charges from zero to $\mathrm{V} / 2$ and

A CR network with a $100 \mu \mathrm{~s}$ time-constant is subjected to (i) positive 5 V step (ii) a further 5 V step after an interval of 1 s . Calculate (a) the fall times of the output pulses; (b) the time taken in each case for on the effect of the initial capacitor voltage on the timing equation?
 The fall time is defined as the time taken to fall from 90% to 10% of is

 $\begin{aligned} \text { i.e. } V_{1} & =0.9 \times \\ V_{2} & =0.1 \times \\ t_{2}-t_{1} & =\tau \log _{6} 9\end{aligned}$

Because the interval between steps $>$ time-constant, output has for ail practical purposes returned to zero. Hence output pulse is identical for second step. This leads to the conclusion that the initial capacitor voltag is irrelevant since it is zero prior to the first step and +5 V prior to the
second. It is the voltages across the resistor that determine the time intervals since they determine the curren.
The time taken to fall to 50% of initial value
$t_{2}-t_{1}=\tau \log _{e}\left(\frac{V_{1}}{V_{2}}\right)$

$=69 \mu \mathrm{~s}$
Because the warts are identical for the two cases so are the relationship
2. A CR network forming part of a transistor monostable is shown ogether with the initial conditions and the step input. The mo nosi Determine that period in terms of $\tau=C R$. If the input voltage falls only to 0.2 V the initial value of A is 0.7 V and the end of the perio 0.2 V he 0.5 V , by was

Inital voltage across resistor $\mathrm{V}_{1}=15-(-5)=20 \mathrm{~V}$
$\mathrm{~V}_{2}=15-0=15 \mathrm{~V}$ inal voltage across resistor $\quad V_{2}$
$\therefore t_{2}-t_{1}=\tau \log _{2} 20 / 15=0.288$
For modified figures voltage at A immediately after step is $0.7-(5-0.2) \mathrm{V}$

$$
. v_{1}=15-(0.7-(5-0.2))
$$

$=20-0.7-0.2=19.1 \mathrm{~V}$
$V_{2}=15-0.5=14.5 \mathrm{~V}$
$t_{2}{ }^{\prime}-t_{1}{ }^{\prime}=\tau \log _{e}\left(\frac{V_{1}{ }_{1}}{V_{2}}\right)=\tau \log _{e}\left(\frac{19.1}{14.5}\right)$

$$
\approx 0.276
$$

\therefore \% change in period $=\left(\frac{0.276-0.288}{0.288}\right) \times 100 \approx 4.2 \%$.

This is typical of the departure from the simple relationship when
transistor saturation and conduction threshold voltages are allowed for.

Cutting the

ignition crackle

Mobile operators have always had to
struggle with the problem struggle with the problem of ignition
and electrical appliance interference generated in their own and other people's vehicles. Seldom is there any one
simple way of overcoming all such prob simple way of overcoming all such prob-
lems and it was discovered a few years ago that some engines are "supernoisy" generating interference peaks some $35-40 \mathrm{~dB}$ more than "quiet" cars. Even on the same vehicle pulse
amplitudes can vary by 30 dB and there can be two separate r.f. pulses associated with each spark-plug firing. Recently, however, two improved suppression techniques have become available in the U.K. The first makes use
of inductively-wound distribution cable sets. These can provide appreciably greater impedance than resistive cables at frequencies between about 50 and 200 MHz , although they tend to be less
effective at m.f. and h.f. The second technique involves the use of spark plugs with in-built resistors. These are available (Champion, NGK etc) in all the popular heat ranges and although hey cost rather more than conventional plugs for use with external resistors
they do appear to result in improved suppression. In these plugs the sup pression resistor is as close as possible oo the spark and thus minimizes radiation from the central electrode abov While resistive muptal
type can be very effective for convenional ignition systems, some electronic and high-energy capacitor-discharge ive approach. Champion have introduced a number of special plugs for marine applications where very powerful ignition systems may be used; these pressor mounted inside the insulat

Yagi versus Quad

For some 30 years there has been a lively and often heated debate among
amateur operators as to the relative merits of Yagi and quad beam aerials. It is now generally accepted that a twoelement h.f. quad with one-wavelength loops is about the equivalent of a good capable of providing a maximum forward gain of the order of 6 dB reference dipole. But what about the large threeand four-element quads that appear to States and Japan although significantly more difficult to build and erect than their Yagi counterparts? And is there any foundation for the long-cherished berformer a quad is the better Some years dights tions in the United States using model aerials (440 MHz) came out strongly in

favour of the quad, suggesting that for given number of elements these arrays grovided some 2 dB more gain than a Yagi.
How
However, a recent article by Wayne Strongly, N6NB in Ham Radio strongly questions the validity of the h.f. and 144 MHz beams. In fact his article throws considerable doubt on the value of using quads of more than two elements since multi-element Yag arrays are not only easier to build but
also to keep up; he finds no evidence to support the view that a quad is any more effective at low height than a Yagi. It is extremely difficult, however, to obtain meaningful measurements on the basis of ground-wave signals and
one suspects that the verdict is still "not proven."
But there is increasing evidence that the conventional multi-band quad using three separate "nested one-wave loops single 14 MHz loops which become twowave loops at 28 MHz doubles the size of the array on the higher band provided that the problem of element-spacing can be overcome fluence on aerial (and equipment) insign would be the new 10.1, 18.6 and 24 MHz bands if these are granted to amateurs at WARC 79. Quad aerials with single untuned loops fed by openeasier to adapt for multi-band use on the Yew frequencies than existing triband Yagi designs.

Scanning the bands

Apropos the note in the March issue on the use by Lars-Erik Johansson, digester cum electric generator Hutchinson, 5Z4DV in Fort Ternan, Kenya tells me that he began using methane gas in 1955. His 2HP Lister nife cells, has clocked a 32 V bank of nife cells, has clocked up over 60,00 now available, running either fully or
artly on "biogas" (methane/carbon dioxide mixture) obtained from cow and pig manure, coffee skins, grass etc. Like M4AQL, this system also provides him with a rich organic fertiliser for his
coffee crop. His "alternative technology" also includes water-heating by solar power. Continues to exploit successfully the earth-moon-earth path with no less than 29 different stations now worked on this mode since November 1978. Worked all continents on 432 MHz was completed with a contact with VK5MC in South Australia. During a recent group completed 17 non-scheduled two-way contacts with France, Ger many, Holland, Italy, Luxembourg, Sweden, Yugoslavia, Rhodesia and the
USA, using a $20 f t$ parabolic dish aerial The equipment is being prepared for e.m.e. operation also on 1.3 GHz and 2.3 GHz .

A new British 'YL' (Young Lady) Amateur Radio Association has been quarterly newsheet is planned and 'onair meetings' are to be held on Monday evenings at 1915 local time on 3605 kHz . Secretary is Diana Hughes, G4EZI, 3

In brief

Over 5,000 people attended the two-day RSGB national amateur radio exhibi.. The Society is to hold an "HF Con. vention" at the Warwickshire County Cricket Ground, Edgbaston, Birmingham on Saturday, September 15 with a film and lecture programme,
dinner, etc. . . A 2.3 GHz beacon sta tion (GB3NEW) is being built at Newbury and is expected to be operational by about mid-summer. . . Canadian amateurs are being granted the right to operate in the band 902 to 928 MHz to 430 MHz) of the 70 cm band. . . . The RSGB National Mobile Rally is at Woburn Park on August 5 and other rallies include Scarborough and Colch ester on July 29; Derby on August 12 ure Centre, Charnock) on August 19 . American public concern with pos sible biological effects of non-ionizing radiation has led to a study of 27 MHz firm conclusion has been reached and he Bureau of Radiological Health is ontinuing investigations. A Bill introduced in the Oregon State Senate would sharply restrict all forms of elecreas and would cover power transormers and high-voltage transmission nes. . . . UK proposals for WARC'79 nclude four new amateur microwav ands at $40.5,49.5,71$ and 160 GHz .

Now, the complete MK 14 micro-computer system from Science of Cambridge

"We've £150,000 worth of recording gear working 24 hours a day - all fed from the OTARI MX5050B. On a cost effectiveness basis alone the MX5050B is unbeatable, but when taking into account sheer professionalism and performance, it is unequalled by recorders three times the price."

Mike McLoughin, Chief Engineer, mdependent Tape Duplicators. Aylesbury.

The Otari $M \times 5050 B$ costs little more than modified domestic recorders. That little extra buys so much more

1. Proper editing facilities with calibrated splicing block 2. Four heads provide 2 or 4 track replay.
2. Bias and EQ adjustable from front panel.
3. Switchable NAB and IEC EQ
4. XLR Connectors. 6. +28 dBm 600 ohm balanced output.
5. Direct drive capstan servo with varispeed.
6. Variable or preset output level.
7. 70 dB (weighted)
signal/noise ratio.
8. Sel sync on each channel.

OTARI from ITA

1.7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879.

THE SET OF CHARACTERS chosen for the graphics option was selected to the graphics option was ASCII set and also provide various shapes for constructing diagrams and pictorial displays, see Fig. 20. The characters are programmed into a 2708 e.p.r.o.m. so the
set may be easily altered to suit inset may be easily altered to suit in-
dividual constructor's requirements. To make the shapes continuous, a full $10 \times$ 6 dot structure is used for each character cell. This is achieved by loading thus inserted a one dot gap in between adjacent characters, and by disabling the line from IC_{34} pin 11 to the video gate $\mathrm{IC}_{33 \mathrm{~b}}$. The function of the gate was
to blank the ninth and tenth line scan in to blank the ninth and tenth line scan in provide line spacing between those rows.
The 2708 is connected in parallel with the 2513 ASCII generator while bit 6 of the v.d.u. and through an inverter to IC_{10} pin 20 . This bit selects which one of the character generators is enabled as shown in Fig. 21. The pulse at $\mathrm{IC}_{\text {sf }}$ pin 1 , whose trailing edge loads the shift regis inverted so that its leading edge clocks the r/w.m. bit 6 into latch IC_{102}. The latch output feeds the video gate and sets an input which, on lines 1 to 8 of the character scan, is held low by the signal from pin 11 of IC_{34} applied to the when the S input is high, the video gate input will reflect the D input to the latch and thus the nature of the character being displayed, i.e. ASCII or graphic.
Note that the latch must be loaded ahead of IC_{45} otherwise time delays in ahead of ${ }^{\text {IC }} 45$ olherwise the bottom lefthand corner of any graphic following a non-graphic to be blanked. When $\mathbf{I C}_{10}$ is disabled, the inverter on its D_{5} output
provides a low to IC IC_{55} pin 6 which then retains the original character spacing on ASCII.

Using graphics

As mentioned in part 3, ASCII may be directly loaded in low level language by opening a [and then typing the cha-
racters required. To enter graphics from this mode, open another [and then type in the graphic characters required. After typing the first character, which
appears in the next screen position (a cursor is essential for picture construcand backstep" key for correcting errors. Typing a] reverts the computer to the ASCII mode of loading. With the high in the ASCII mode and so the first [mentioned above need not be typed in. When loading ASCII or graphics in the low level, the computer includes 1, 1D in
hexadecimal, in the string of characters loaded into the program. This is recognised as the end-of-string marker by the low level subroutine at $03 \mathrm{CE}_{\mathrm{H}}$, mentioned in part 4, and for this reason a] can not be included in an ASCII string. In graphics, the [key stands for a shape
and so this restriction does not apply, also, RETURN does not function so for a new line type], RETURN, [. All of the instructions for graphics are already in the monitor r.o.ms so no re-pro-
gramming is required for this optional gramming is required for this optional
facility. A selection of computer displays is shown in Fig. 22.

Graph plotting

In part 4, a program was described which analyses the frequency response of an RIAA equalised pre-amplifier. Fig.
22 (d) shows a version of this program which displays a graph of gain and frequency. Both quantities are logged before they are plotted to produce the standard dB versus log. of frequency logarithmically at line 52 at four increases per decade, and for each point plotted the frequency is displayed at the top of the screen. The original reason for developing this program was to hi-fi and so, after reaching 20 kHz , the program branches to line 200 where it inputs a new value for F , the $25 \mu \mathrm{~F}$ capacitor, and then replots a curve super-imposed upon the original. the demonstration programs at the third end of the third e.p.r.o.m. in the computer can be replaced with firmware which enables it to
extra high level commands;

AXIS ab

which declares the maximum values of the vertical and horizontal axes of a graph plot, and

GRAPH ab
which plots the point (b,a) on a graph defined by the last AXIS statement. Th numbers. The plotted graph is of the first quadrant, i.e. both a and b positive, and is realised by dividing the screen into 8192 (128 by 64) cells which ar selectively illuminated using graphic
shapes at screen addresses obtained by scaling actual results to be plotted against the limits declared in the AXIS statement. The graph appears as dis crete points, the spacing of which usually determined by a FOR loop con-
aining the GRAPH statement. The firmware controlling these processes ignores the sign of the variables (hence the first quadrant only) and will plot all results as positive. It also uses the variables P and Q for the scaling factors,
thus only the remaining 24 are available in graph plotting programs.

E.p.r.o.m. programmer

The 2708 seems to be the most popular e.p.r.o.m. at present and this is probably due to the ease with which it may be programmed. Unlike many of its com-
petitors, address locations and the data to be programmed at those locations are entered at the same level and polarity, and at the same pins as those obtained during read operations. Apart from the application of data to the device, the
only changes made during programonly changes made during program-
ming are that the chip enable input is taken to +12 V and a +25 V pulse is applied to the programming pin 18 . It takes 100 ms to program each byte programmed byte by byte because pulses this long may cause spurious programming of adjacent cells on the chip. The specified maximum pulse length is only 1 ms and so a programme must make at leasice, slowly bringing up the values in each cell to their final state. The programmer requires 8 data bits, 10 addres bits and a signal bit to commence the programming pulse for each byte.
Fig. 23, the two upper bits of the addresses are supplied by a four-way switch and the remaining 16 bits are fed serially to a 16 -bit shift register formed by two 4015 s. Data is sent out via the and pulses to clock the bits into the shif

Fig. 23. E.p.r.o.m.
programmer and
circuitry. Pin circuitry. Pin
numbers for the numbers for the i.c. socket are
in circles.
in applied some bytes may exhibit access times well outside the manufacturer's specification and this can cause erratic computer operation. The proconventional tage is supplied through a because at low levels regulator and e.p.r.o.m. is a current source, the IN4148 and 2 N 4409 form a positive clamp. Data to be programmed into an a.pea 1C00 to 1CFF inclusive. Originally the memory was divided into four secrately which reduced the programmer
address bits to 8 , to match the shif registers. However, it has also proved small areas of r.o.ms during firmware development. When the r.o.ms are new or erased, all of the locations hold a 1 , i.e. the bytes are all FF. If a sector of a med, or if a partially filled sector is to be added to, the command FILL 1 C 00 will fill 1 C 00 to 1 CFF with FFs and will thus mask any areas which are not to be The eprams prior to entering the data. removed from the programmer with the
power-switch off and the green l.e.d. on Progressive switching ensures that all before +25 V is made available and prevents any chance of random programming. To program a sector, the used, check PROM ${ }_{0}$ but before this is he required position. The programme will also accept 2704 devices which are half the size of 2708 s and only require perience, many 2704 s are 2708 s in another guise. All of the instructions or programming e.p.r.o.ms are in the riginal r.o.ms so no firmware change

Erasing e.p.r.o.ms

For rapid erasing a high-power shor wavelength ultra-violet lamp is re quired. Because commercial units are quite expensive I use a Philips 6 Watt aluminium foil, except for a small window a third of the way from the glass end, to near the base. Because the base forms one of the connections, the gives eye protection and concentrates the light at the window. The e.p.r.o.ms to be erased are placed as close as pos sible to the window and left for To be continued

USSR National

Exhibition

Anyone who visited the Russian National Exhibition at Earl's Court could be clusion - that the Russian space effort might have owed its major successes to he exploitation of forces no more modern than steam power. There was ment available, but very little specinformation on modern Russian technology. most delicate engineering had ghe into the construction of impresshemical process works and a nucleal power station, although only general details were given concerning the latter The Soviet Union pioneered the peaceful uses of atomic energy.. ment."
Much of the entrance hall was iberally coated with further "informative slogans such as "The USSR is a voluntary union of 15 constituent may or may not have been true, but eatly demonstrated the naivety western visitor generally.
Even in the excellent models modern electronic techniques were notable for they were ingeniously contrived, they smacked more of the esoteric modelmaker than the engineer or technologdustry permits the conclusion to filter through that either the "guns before butter" policy still operates or they don't want us to know too much about consumer applications What, even in rue case it seems that mining steel production and space research still receive most of the funds and the consumer ind
Ma. energy into down-rating its technical pecifications. "Signal Generators" (an ndated publication) gave details of a more like instruments which looked receivers of the inter-war years than est equipment manufactured in 1978 or 1979. Some of them offered a spare "oschlator valve as standard equipube frequency display
proved difficult to come by although
ne short book emerged entitled "USSR cience," carrying the interesting in had been "edited in 1976." Nobody in fact the available technical handbooks co red monitoring grade equipment or hat they are likely to be the sort of machinery used at the Baikonur Cos vided) although if the organisers don't provide up to date information they can hardly blame visitors for taking 1954 designs as represents. current developmen.
ure, Collet's bookshop (free enter prise, British-style) was doing a roarin rade in current Russian books, magazines, classical and folk music A close search failed to uncover an electronic switching or opto-electronic devices in the numerous active display and models. A steam hammer seemed to flot route display (continuously altern ating between European and Siberian services) revealed under its skirts some pretty heavy engineering, includin noisy relays and metal-clad cables. A paving on power consumption and with a handful of l.e.d.s and display drivers, etc., but if the Russian techno rats were in the habit of using such details.
dailis.
Allay) so town (also a model in the oked vemere on the 69th paralle
 he quoted attractions include "sport acilities and fresh fruit and vegetables ll year round." These are matter which do not raise a great deal of debate n western communities generally. Displays of textiles (and all the dis plays were sensitively arranged) furthe expenditure on consumer synthetics except for the outer skin of one or two rather trashy cuddly toys - design which have not changed at all in 10 'The Soviet people's need for many durables that were only recently egarded as being in short supply is now being satisfied." Only natural fibres "people's clothing" exhibit contained some beautiful garments
"Soviet law prohibits hunting of 18
animal and 29 bird species." Bukhara another state agency, concerned with
the export of animal skins and other the export of animal skins and other
luxury clothing, was dripping with furs only a few metres away from this proud boast. Some of the little information nippets on the walls were none too omewhat jaded eye: "The Soviet Union leads the world in establishing top limits or noxious substances in the atmosphere."
At a completely different level, visi tors arriving via the underground en trance must have seen plenty of
evidence of Russian "product reticence" - every single display frame up the escalator (which could have been sefully employed to show views of ractors, space probes or even the baby mammoth) was concerned with hrust continued inside near the bar where large posters said that "only odka from Russia is genuine Russia odka."
One of the more interesting display nformation other than the basic rol feach was provided
At least Russian watches (on sale in and as cheap as ever. So too is the "Saratov" refrigerator, which sells at about $1 / 3$ the price of its English equivalent. The leaflet illustration wa orth getting as well - it showed tha fre Russian view of the Englishman saucepans with handles sticking out o he door. The place where the reserved gentleman keeps his milk, bottom rack n the inside of the door, was taken up of White Horse whisky!
One thing was certain about this exhibition - information had been re stricted to "non-classified" displays of rtistic and cultural life.
It's a great shame that so much effor went into providing an admittedly inactivities while so little was put into a really open view of Soviet technology The overlay, of dogma, experienced a every turn and voiced in the familia tones of that familiar lady and gentleman who have been telling us about the glorious five-year plans for severa
years on Radio Moscow, left this other wise colourful and bright exhibition heavy with ideological fog.
On the credit side, the event showed that at last the snow on Russian boots is beginning to melt. As the divide be systems begins to narrow, we may even see the birth of an Anglo-Russian ty receiver, more high quality consume products from Soviet technology and fluid which appears at the moment to be Russia's proudest export.

CIRCUIT IDEAS

Programmable

attenuator

The network in Fig. 1 is a programmable attenuator where the attenuation in dB
is set by a binary number on the switches. This principle may be extended to more bits, either in binary or b.c.d. The circuit is a development of a resistive transmission line where each section, when loaded at the right by a sents an equal load of $10 \mathrm{k} \Omega$ to its neighbour on the left and provides a selection of attenuations from 0 to 15 dB . With the components shown the net-
work has an error of less than 3% per work has an error of less than 3% per
stage for attenuation or impedance. Fig. 2 shows a c.m.o.s. changeover switch using two 4016 sections.
J . Allen
Radcliffe
Lancs

Fig. 1

Fig. 2

VU meter

This l.e.d. meter offers lower cost and greater flexibility than a conventional moving coil type. Diode D_{1} rectifies the
audio input signal and the CR network provides a time constant for detecting peaks. Resistor R is selected so that the voltage swing at Y is about 150 mV and the potentiometer is adjusted until D_{8} i just on. As the input voltage increases,

Tr_{1} starts to conduct which causes a progressive voltage drop across the collector resistor chain of Tr_{2}. These vanages are used to drive
trans in the CA046.
The display can exhibit an exponential law due to the emitter-current base-emitter voltage characteristic of Tr_{1}. Alternatively -a reasonably linear
law can be obtained by adjusting R Other laws are also possible by changing the values of R_{1} to R_{5}. If two meters are used and arranged as shown, point X should be made co y one l.e.d. used for D_{2}. Chelmsfor
Essex
$\overbrace{0}^{+12 V}$

A standard multimeter can be used to make phase measurements at audio frequencies with the circuit shown. The meter is calibrated for a f.s.d. of 180° and an l.e.d. indicates when the phase difference is greater than 80 . The 4013 flip-flop is reset at the start of a positive clock pulse is provided at the start of a^{*} negative excursion. If the data input of the flip-flop is high when the clock pulse occurs, the l.e.d. is switched on for half a cycle. The values shown are for a 12 V supply.
N. G. Boreham
S. Devon
S. Devon

Four-trace scope switch

 This unit allows up to four signals to be displayed simultaneously on any ming facility and a timebase output. As each input is fed to the scope sequentially by a c.m.o.s. switch, a second switch in IC_{3} selects a shift potential alter the trace position. The input signal voltage by the oscilloscope.Inputs are selected by a $\div 10$ counte which has output 4 connected to the reset. Because the counter is clocked by pulses from the oscilloscope, the fou The buffers in IC_{1} are used to square th oscilloscope output so sawtooth and gate outputs can be used.
The prototype was powered from $\pm 5 \mathrm{~V}$. supply so that d.c. coupled signal ow sweep rates IC_{1} can be connected as a chopping oscillator, and mor witches can be connected if more in puts are required
Worcester

Audio preamplifier

Measurements were conducted with the help of Brüel and Kjaer equipment. Listening tests confirm that the circuits

Modifications

Some increase in signal-to-noise ratio is available by the following alterations: gain increase in the first and second crease of emitter resistor values use of transistors giving even lowe noise
collector current decrease in the first stage (this leads to some increase o
s / n ratio over the band) s / n ratio over the band) response to the RIAA recommendation (approximately 1dB increase), can be realized merely by changing the corection circuit time constant.
The quest for an increase in s / n ratio rumble, disc noise and sometimes with other factors, for example tape-recorder noise, acoustic noises of rooms, etc. Of course in doing so one must
comply with linearity requirements especially in the first stage. In the case of a different gain distribution among stage it is possible to decrease difference tone distortion to some extent at the cost of an increase in harmonic and versa. Harmonic and intermodulation distortion level is decreased by in creasing the collector current in the second stage.
Difference tone distortion level is
drastically decreased drastically decreased by increasing col-
lector current in the first stage, which may demand some increase in power supply voltage, giving only an in significant decrease in s / n ratio When connecting a pickup giving
higher output than $200 \mu \mathrm{~V}$ or 2 mV at $3.54 \mathrm{~cm} / \mathrm{s}$ set the output voltage level according to the required output level 100 mV by increasing the values of chiefly in the first stage. better linearity will give even better results as to distortion, but . . . at the present time as a rule designers take of amplification problems of the linearity of amplification elements.

References

1. Briel \& Kajaer, Electro-acoustic Measurements 9 Transient intermodulation disto tion (TIM)
2. Holman, T. Dynamic range requirements
of phonograph preamplifiers, Audio, 1977, no. 3. Pisha, B.V. Nine CD-4 phono cartridges
ested, Audio, 1974, no 3.
continued from page 60
4.Lewis, W.D. \& Hunt, F.V. Theory of tracin distortion in sound reproduction from pho ograph records, JASA, 1941, vol. 12, no 3. ntermodulation method of tracing distortio ncountered in phonograph reproduction, RCA Rev., 1949, vol. 10 no. 2. 6. Corrington, M.S. \& Murakami, T. Tracin
distortion in stereophonic disc recording RCA Rev., 1958 , vol. 19, no. 2. Bauer, B.B. Tracing angle in phonograp pickups, Electronics, 1944 , vol. 18 , no. 3 .
Hiraga, J. Mesurs sur les honecal La distorsion, Revue du Son, 1971, no. 220, ${ }^{221 .}$
3. Zwicker, E. \& Feldtkeller, R. Das Ohr als Nachrichtenempfänger, S. Hirzel Verlag Stuttgart, 1967.
Ryffert, H. Die Grenzen der Hörbarkeit nichtOrdnung für die einfache' Quint; frequenz 1961, vol 15, no. 8 .
Lazenby M. How
Lazenby, M. How little distortion can we
hear?; Wireless World 1957, vol hear?; Wireless World, 1957, vol. 63 , no. 9 .
4. Goron, E.I. Study on perceptibility of distortions in broadcasting channels, Svyaz publishing house, 1959.
magnetic phonograph pickup, JAES, 1975,
Additional reading
Hamm Russell O. Tubes versus transistors is there an - audible difference?; JAES, 1972,
vol. 21, no. 4.

Wireless World binding - VAT change

As a result of the Government's recent increase of Value Added Tax we regret that the price of binding a volume of Wireless World has had to be increased. Instead of $£ 6.65$ the
price is now $£ 6.90$ (which includes price is now
the index as before).
Apart from this the arrangements for the index and binding remain as noted in the May 1979 issue (p.70).
The index for Volume 84 (1978) is The index for Volume 84 (1978) is now available, price 50 p including
postage, from the General Sales Deportment, IPC Electrical-Electronic Press Ltd, Dorset House, Stamford Street, London SE1 9LU.
If you wish to use the binding service send your copies. to Press
Binders Ltd, 4-4a lliffe Yard, Crampton Street, Walworth, London, SE17 with your name and address enclosed. Confirm your order to the above) and with this letter to Dorset House send a remittance of $£ 6.90$ for each volume. Please allow up to ten weeks for delivery. In both cases cheques should be
made payable to IPC Business Press made payable to IPC Business Press
Ltd.

Passive notch
filters continued from page 66
Hence
$a \cdot b=\frac{b}{1 / a}=\frac{R_{\mathrm{b}}+p L_{\mathrm{b}}+1 / p C_{\mathrm{b}}}{1 / R)+p C_{\mathrm{a}}}$ Assume the relation
$R^{2}=R_{\mathrm{a}} \cdot R_{\mathrm{b}}=\frac{p L_{\mathrm{a}}}{p C_{\mathrm{b}}}=\frac{p L_{\mathrm{b}}}{p \mathrm{C}_{\mathrm{a}}} \quad$ B. 4
then $R_{\mathrm{b}}=R^{2} / R_{\mathrm{a}}, p L_{\mathrm{b}}=R^{2} . p C_{\mathrm{a}}$, and $1 / p C_{\mathrm{b}}=R^{2} / p L_{\mathrm{a}}$.
Replace the numerator of equation B. 3 bove identities
$a . b=\frac{b}{1 / a}$
$=\frac{\left(R^{2} / R_{\mathrm{a}}\right)+R^{2} \cdot p C_{\mathrm{a}}+R^{2} / p L_{\mathrm{a}}}{\left(1 / R_{\mathrm{a}}\right)+p C_{\mathrm{a}}+\left(1 / p L_{\mathrm{a}}\right)}=R^{2}$
$\left(1 / R_{\mathrm{a}}\right)+p \mathrm{C}_{\mathrm{a}}+\left(1 / p L_{\mathrm{a}}\right)$
Thus, arm ' a ' is the inverse of arm ' b ' in the lattice of Fig. 1.1, i.e., the product $a . b$ equals R. the input impedance of
the lattice, with components relation of equation B.4, equals R at all frequencies. From Fig. B. 1 and
$\binom{V_{1}}{I_{1}}=\binom{\left(\frac{b+a}{b-a}\right)\left(\frac{2 b a}{b-a}\right)}{\left(\frac{2}{b-a}\right)\left(\frac{b+a}{b-a}\right)} \cdot\binom{V_{2}}{I_{2}}$ в. 5
Thus
$V_{1}=\frac{1}{b-a}\left[(b+a) V_{2}+2 b a \cdot I_{2}\right]$
From Fig. B. $1 \quad I_{2}=V_{2} / R$
and from equation B. $2 \quad a=R^{2}$ V_{1} becomes
$V_{2} \frac{b+R}{b-R}$ or $\frac{V_{2}}{V_{1}}=\frac{b-R}{b+R}$.
To be continued

gineering from the University Crtical en gineering from the University College of
North Wales, Bangor, Gideon Kalanit joined Rediffusion in 1956, and was
involved with the development of cable television systems, including experimen-
tal paytv systems This. tal pay-t.v systems. This work led to the
interest in notec filters, the subject of this article.
In 1965 he joined In 1965 he joined Marconi Instruments to
design equipment for television signal measurement, and rejoined Rediffusion Engineering in 1969 . Presently with the
advanced systems department. he is con advanced systems department, he is con-
cerned with instrument design and the
dever development of Dial-a-Program cable tv
systems. systems.

NEW PRODUCTS

WIRELESS WORLD. AUGUST 1979

others representing $1,2,4$ and 8 . On position " 0 " no contact is made, but as the spindle is "clicked" around its remaining 9 positions the number of the position selected in b.c.d. form. The spindle may be continuously rotated and in this mode may 6° resolution. Outputs are capable of direct interface to 50 V with 25 mA current drains. Impectron Ltd., Impectron House, 23-31 King St., London W3 9LH WW305 Silicone / epoxy moulding compound A new silicone/epoxy moulding compound, the Dow Corning 631 compound, gives fast and reliable mouldability with virtually no Products Division of Fairchild USA. Their complementary m.o.s. devices are used extensively in consumer clocks, clock radios and commercial/industria timers and are encapsulated with granular compound based on a hybrid mixture of silicone and epoxy resins, combining the advantages of each individual material. It is claimed to possess the chip compatibility and moulding ease of silicones and the high strength, lead sealing and excellent salt atmosphere resistance of epoxies. This compound is intended for the moulding of dependable long-term packaging of integrated circuits and other semiconductor devices. Dow Corning Europe, Chausee se la Hulpe, 154, 1170, Brussels ww306 High power servo amp. / motor driver Programmable current limiting and excellent stability when driving into resistive or inductive loads are features which Fairchild (UK) points out as the prominent points of its SH3015 high power amplifier. This device can supply up to 6A continuously into a load at a variation of $\pm 35 \mathrm{~V}$, provides an internal power dissipation (d.c.) of 70 W with a case temperature of $25^{\circ} \mathrm{C}$, input voltage differential of 30 V and d.c. output current of 10 A . The amplifier front-end incorporal amplifier with additional voltage and current gain stages enabling it to meet the performance	required by servo systems. Out put is protected from voltage transients caused by inductive surges and output current limiting is selected by fitting appropriate resistors between the supply pins and the respective current limit pins. The case is Camera and Instrument (UK) Ltd., 230 High St., Potters Bar, Herts EN6 5BU WW307 Locking test connectors Where connecting cables or legs on a printed circuit layout have been cropped or pulled completely out, the firm application of test clips is difficult, giving rise to poor electrical contact. To overcome this problem an "EZ" test book, designed to lock through p.c. board test poin British company, British Central Electrical. The "XG" connector is a further addition to this company's range of test connectors and depends upon a hypodermic" action which locks the probe firmly onto the board. This hook is designed to the same specification as the "EZ Micro-hook" being of particularly delicate construction so as to enable test clips to hook onto vertical p.c. boards without damaging connections ny their own weight. The "XG" is available in three sizes to suit holes ranging from .025 in to .042 in. British Central Electrical Co. Ltd. (Special Products Div.), Unit 10, Cravers Trading Estate, Southampton Rd., Ringwood, Hants. WW308 Quick-connect 25A triac Three versions of the CSB series of triacs, rated at 25 A and specially designed to "plug in" to solderless connections can be obtained from Walmore Semiconductors. The CSB20, repetitive peak CSB60 feature ratings of $200 \mathrm{~V}, 400 \mathrm{~V}$, and 600 V respectively. Peak single cycle surge current is 250 A , peak gate	power is 16 W and average gate power 0.5 W . Operating tempera- ture range is $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$. Walmore maintains that the reason for the wide capabilities of these triacs lies in the Unitrode ChipStrate assembly, which incorporates a copper heat spreader, a beryllium oxide substrate for low thermal resistance ($1.2^{\circ} \mathrm{C} / \mathrm{W}$ max.) and a singlepiece frame construction for mechanical strength and optimum power handling. The ChipStrate construction is also credited with providing the device/mounting flange isolation rating of 2.5 kV r.m.s. Walmore Semiconductors, 11-15 Betterton St., Drury Lane, London WC2H 9BS WW309 Humidity measuring set Comprising a measuring bridge ($15 \mathrm{HB}-1$), an oscillator ($15 \mathrm{ASO}-1$) and two complementary humidity sensing system provides a performance exhibiting an error margin of only 1%, according to the manufacturer. The oscillator output is a 60 Hz sinewave of 10 V , pk to pk, and the amplitude is claimed as stable within 150 parts per million per degree Celsius. Two models of the bridge are available, the $15 \mathrm{HB}-1 \mathrm{~A}$ and $15 \mathrm{HB}-1 \mathrm{~B}$ as are two models of the linearizer, being the RH1152A and RH152B. By linearizer relative humidity within the range 30 to 100% or 10 to 40% can be measured. A power supply of $15-0-15 \mathrm{~V}$ d.c. is required, and the output is then stable to within 250 parts per million. This humidity measuring system does not include a sensing device, so a suitable hygrometric element will be required to complete the measuring set. Ancom Ltd., Devonshire St., Cheltenham WW310	15W solar cell panel "Alternative energy" in the form just over 1 A at 15 V is now available from Siemens under the type number SFH 120-36. The makers claim that these panels will provide electrical power for a variety communications systems in desert regions, on buoys or navigational beacons. The panel of battery cells measures $560 \times 480 \times 13 \mathrm{~mm}$, the total weight being 4 kg . In all, 36 cells, 400 mV are connected in series via heat limiting resistors - the related to a sunlight-level producing 100 mW per sq cm . Individual cells are also available as 5 mm and 10 mm items in length up to 20 mm . These are deindividual chips with solderable arranged in series depending on the voltage required. Individual cells are suitable for supplying photographic flash equipment. The complete range of cells begins with 5 mm square plates, increasing to 3in diameter round cells which are used in the com- plete panel. Siemens Ltd, Siemens House, Windmill Rd., Sunbury on Thames, Middlesex.' WW311 Smoke detector chip Although smoke detector i.cs are by no means new, the MEM 4963 can function as the detecting and audio driving device in concert with an ionization chamber, a photoelectric detector or both. strument Microelectronics, points out that the recommended circuit offers interesting features to fire and smoke alarm system designers, due to the versatility of the circuit's interconnections. When used in a system format, if one detector "sees" smoke, all detectors will sound a warning. A further important feature is that the unit detecting smoke will generate an audibly different sound to the other units in the system, giving an indication of the location of the fire. Smoke detected locally causes the alarm signal to be continuous, while an alarm state relayed from an adjacent unit initiates a signal pul- sing at 20 ms every 100 ms , a mark to space ratio of $20: 80$. The circuit takes current once every 10 s, for $150 \mu \mathrm{~s}$ on stand-by and $150 \mu \mathrm{~s}$ detected. An intermittent alarm signal, 20 ms long every 40 s , is power sources are low. Stand-by power consumption is $15 \mu \mathrm{~A}$. tronics Ltd., Regency House, 1-4 Warwick St., London W1R 5WB. WW312

WW - 060 FOR FURTHER DETAILS

ANNOUNCING THE PROFESSIONAL Viewinila EXHIBITION

A

DEMONSTRATION OF EQUIPMENT
AND SERVICES FOR THOSE PROFESSIONALLY ENGAGED IN TELETEXT AND VIEWDATA

- The planned inauguration later this year by the Post The planned inauguration later this year by the Post
Office of the world's first public viewdata system, in the form of the Prestel service, brings a pressing need for sophisticated hardware, software and other services
those intending to provide information to the system. hose intending to provide information to the system. - But there is much confusion among both information
providers and hardware suppliers as to the type of equipproviders and hardware suppliers as to the type
ment available, what it can do and who supplies it
- Since teletext and viewdata techniques offer ideal solutions for problems of information storage, retrieval and dissemination for both small and large organisations, these questions
systems.
To answer these questions and to bring together suppliers and users at one time in a convenient venue, Viewdata and TV User" is setting-up a select protessional
xhibition of hardware and services for teletext and viewdata systems.
- This is not a show of domestic user equipment for the general public, but an exclusive event entirely devoted to the showing and demonstration of equipment and services

To be held at
The West Centre Hotel
Lillie Road, London
on
November 7 and 8
For further information, contact The Exhibition Manager, Vie wdata Exhibition, Room 821, Dorset House, Stamfor
Street, London SE1
25137 RIU. Telephone: $01-2618865$. Telex
25 8ISRS G.

ELECTRONICCOMPONENTS AND VARIOUS TESTERS

ELECTRICAL INDICATING METERS PANEL METERS EARPHONE \& HEADPHONE JACKS CLAMP METERS POTENTIOMETERS

HIGH PERFORMANCE! PROMPT DELIVERY! COMPETITIVE PRICES! WHAT MORE DO YOU WANT?
Hung Chang, world's largest independent manufacturer \& exporter of Meters and Testers, has production capacity of more than $1,000,000$ Meters per month. You will be completely satisfied with our products that have been exported to more than 35 countries and made by our 1,200 workers with special care. Please contact us and you will know Hung Chang

```
HC HUNG CHANG PRODUCTS CO., LTD
    HEAD OFFICE & FACTORY
    MDDRESS S10-222, Bulgwang-Dong, Seodaemun-ku
```



```
    CABLE ADD. 
```

ARMON PRODUCTS LTD. COTTRELL HOUSE 53.63 WEMBLEY WEMBLEY MIDDX. HA9 8BH TEL: 01-902 4321

We're about to lift the wraps off the most exciting new instrument of the yeary
new
$3 / 2$
digit $L C D$ multimeter is less than half the cost of competing products and brings ownership of these incredibly
useful instruments within reach of everyone. The LMM 100 multimeter features 25 voltage current and resistance
ranges and has a large 0.5 in. LCD display. ranges and has a large 0.5 in . LCD display.
Up to 2,000 hours use from one transistor battery. The LMM 100 is the first portable LCD multimeter with a digital hold facility
for data-logging etc. Send off immediately for data-logging etc. Send off immediately
for full details of specification and price. First 100 brochures will be sent out with a
i
E5 off' voucher so ' $£$ off' voucher so take full advantage
this unique opportunity by contacting:

LASCAR ELECTRONICS BASILDON (0268)727383 Unit 1, Thomasin Road, Burnt Mills, Basildon,Essex SS13 1LH

WW - 061 FOR FURTHER DETAILS

UK677 KIT
Stabilized Power Supply
Variable Voltage $0-20 \mathrm{v}=2.5 \mathrm{amp}$
Variable Current Limiting
LED Current Limit Indicator
Calibrated Metering for Current and Voltage
Load Regulation
Ripple $<1 \mathrm{mV}$
Input Voltage $115-220-250 \mathrm{v}$ A.C. $50-60 \mathrm{~Hz}$
All Aluminium Cabinet
£ 36.73 + VAT
Trade and Export Enquiries Welcomed
ww - 030 FOR FURTHER DETAILS

If we told you the best way to talk to your staff... what would you say?

We can tell you how to talk to your secretary, your accounts clerk, your foreman -or to all of them at once. We can now offer you the first really practical and economical duplex intercom system - for all your communication needs.

-The first 100% British designed and manufactured duplex intercom system
Employs the smallest known control unt

- Offers paging facility as standard
- Uses less cable than competitive systems. Easier to install - More standard facilities-And les

wW - O40 FOR FURTHER DETALLS

J. L. Linsley-Hood High Quality Cassette Recorder

We are the Designor Approved suppliers of kits for this excellent design. The Author's
reputation tells ail y you need to know about the circuitry and Hatit expertise and

 REPRRNTS of the 3 articles descsibing this design 45p No VAT.
REPRINT of Posiscrit artice 30 .

TEST CASSETTE TC1
Special Hort Coprigh test tape makes it easy to set up vU level. head azimuth and
aper spoed withount test instruments. Suitabie tor any cassette recorder. Complete
pith instuctions E2.50 inc VAT.
VFL 910 . Vertical Front Loading Caseotte Mochanitm. Features include: Tape
 PPTIONAL EXTRAS. Set of six knobs. $\mathbf{E 1 . 4 0}$.

PLASTIC ESCUTCHEON
Suitale for CRV and CTT mechanisms. As used on our cassette recorder, complete
with mounting scrows $£ 1.9$ phus CASSETTE HEADS

LENCO CASSETTE MECHANISM
We hold stocks of a range of Lenco tape transports for all uses, we can also supply

CASSETTES

 $\left.\begin{array}{c}c 9080 \mathrm{p} \\ \mathrm{C} 60 \text { 60p }\end{array}\right\}$ \qquad
C10 35p \qquad
 \qquad
HART ELECTRONICS
Penylan Mill, Oswestry, Salop
Personal callers are always welcome
but please note we are closed all day saturday

West Hyde have more than 600 different instrument cases in stock + accessories

THE NEW HIGHLY VERSATILE AUDIO ANALYSER

SIGNAL GENERATOR
DIGITAL FREQUENCY METER

- WOW \& FLUTTER METER
- MILLIVOLTMETER
- $£ 350$ + VAT

$15 \mathrm{~Hz}-150 \mathrm{kHz}$ Sin /Sq Low Distortio 6 Digit LED Display 9 Ranges to 0.01% F.S.D.
$3 \mathrm{KHz} / 3.15 \mathrm{kHz}$ to 0.01% F.S.D.
Mean/Peak $100 \mu \mathrm{~V} .100 \mathrm{VFS}$. Mean/Peak 100μ V-100V F.S.D.
CCIR/ARM Noise DIN Audio Ba DIN Rumble DIN Flutter RIAA O.P. Further details available from:-

IT NewBear Systems 숖

INTRODUCING....... .

APPLE II. 16K -
COMMUNICATIONS INTERFACE CARD
$£ 110.00$
HIGH SPEED SERIAL INTERFACE CARD
HIGH SP
£ 110.00
PROTOTYPING CARD
£ 18.00
CARRYING CASE
${ }_{£} 25.00$
PARALLEL PRINTER INTERFACE CARD $£ 110.00$

HORIZON
S100 bus Z 80 based micro.

All prices subject to 15% VAT. Head Office:
40 Bartholomew Street, Newbury, Berkshire
Telephone: 063530505 Telex: 848507 NCS
2A Gatley Road, Cheadle, Cheshire
2A Gatley Road, Cheadle,
Telephone: 0614912290
6K RAM WITH SINGILE DISC DRIVE
(Double Density)
$£ 1265$
32 K RAM WITH DOUBLE DISC DRIVE WITH 2 SERIAL AND 2 (Double Density) $£ 1983$

Please telephone for a demonstration.

WW - 077 FOR FURTHER DETALLS

WIRELESS WORLD, AUGUST 1979

Britain's CBMGFST Exphibition
 6,7\&8 each day

Admission is $f 2$ if vou register on arrival
but F RREF pre-registration tickets are but FREE Dre -registration tickets yours if this could
by October 15.
COMPEC '79 tickets
Room 821 Dorset House,
Stamford Street, London, SE1 9Lu
England.
Please send me.... FREE
pro-registration tickets
for Compec '79

USE BLOCK LETTERS. WRITE WITHIN SPACE

FUTURE FILM DEVELOPMENTS 36/38 Lexington Street, London WIR 3HR Telephone 01-437 1892/3 • Telex 21624 ALOFFD G

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

he first ever kit specialy produced by Integrex for this British NRDC

 selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input sign
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 49.50$ + VAT
or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$
Tone cancel switch. 2 tape monitor switches.
Complete kit only $£ 63.90$ + VAT.

Wireless World Dolby ${ }^{\text {® }}$ noise reducer

Featuring:

- switching for both encoding (low-level h.f. compression) and decoding
a switchable $f . m$. stereo multiplex and bias filter.
- a swichable f.M. stereo multiplex and bias filter.
provision for ding Dolby f.m. radio transmissions (as in USA).
on equipment needed for alignment.
- no equipment needed for alignment.
- suitaitity forboth open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head m

Typical performance Nolse reduction better than 9dB weighted.
Cliipponin livel $16.5 d d_{B}$ bove Doliby level (me Cipping level 16.5 DEB above Do
at 1% third harmonic ontent) Harmonic distortion 0.1% at Dolby level typically
0.05% over most of band, rising to a maximum of
0.12%

Abstract

machines.

Also available ready built and tested .
Calibration tapes are available for open-reel use and for cassette (specify which) Signialto-noise ratio. 75 ddB (20Hz to 20 kHz , signal
at Dolby. level) at Monitor output

Single channel plug-in Dolby (IM) PROCESSOR BOARDS 92×87
Single channel plug-in Dolby ${ }^{(14)}$ all components
Single channel board with selected fet
Price $£ 2.75$ + VAT
Single channel board with
Gold Plated edge connector
Price £1.75+VAT
Selected FETs 65p each + VAT, 110p + VAT for two, $\mathbf{£ 2 . 1 0}+$ VAT for four.
Please add VAT @ 15\%
We guarantee full after-sales technicai and servicing faciities on all our kits, have you checked that these services are available from other suppliers?

Dynamic Range >90db
Complete Kit PRICE: $£ 43.90$ + VAT, Price $£ 59.40$ +VAT

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button
FM Varicap Stereo Tuner combined Amplifier. r.m.s. per channel Stereo

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/off HET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic FF , INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tule requiring no RF alignment, ceramic IF, $88-104 \mathrm{MHz}$. 30 dB mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICE: $£ 59.95+$ VAT NELSON-JONES MK. 2 STEREO FM TUNER KITT Price: $\boldsymbol{\text { In }}$ + VAT 95 + VAT. NELSON-JONES MK. I STEREO FM TUNER KIT

```
A very high performance tuner with dual
l
```


Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ 0.75 V .
Image rejection -70 BB. IF rejection -85 dB . THD typically 0.4%. C stabiilezed PSU and LED tuning indicators. Push-buutton tuning and AFC Chit. Choice of either mono or stereo with a choice of stereo decoders.

Mono $£ 36.40$ + VAT Compare this spec. with tuners costing twice the price.

With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder $£ 44.20$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typically 0.3%
funing range $88-104 \mathrm{MHz}$

2dB. Headphone output. Tape $\ln /$ Out facility (for noise reduction unit, PRICE: £35.95 + VAT

BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT PHASE-LOCKED IC DECODER KIT ... £4.47 +VAT BASIC MODULE TUNER KIT (stereo) $£ 18.50$ + VAT PUSH-BUTTON UNIT VAT PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT
$\mathbf{8 8 . 8 0}+$ VAT

You get a special deal when you use our Colour Photo Service. Thousands of
nagazine readers are delighted with it. Because you save money on Kodak So why not tive it a try? Youlll he deli iohted with prints you actually receive! drints. Without borders you get as al large a picture as possible - and our
位
HERE'S WHAT YOU DO
 o. Wireless World Colour Photo Service. FREEPOST. Teddinglon TW11 $8 B R$
No stamp is required. Send no money al his ster

FREE KODACOLOR FIL

Well send you a Kodacolor film, absolutely free. with your prints. topether
with an invoice for only the successful shots. eliminating the need for credit
notes.

unbeatable value

You're probably paying around 18 p a print plus $£ 1.10$ for developing.
Well, our price is an amazing 16 p per print plus only 90 p to cover is 90p (assuming no prints come out) inc ving! Our minimum charge and Eire, C.I. and B.F.P.O. Remember. you only pay for successful prints - no credit vouchers. And you
only pay on invoice: a straight forward husiness transaction with the excra only pay on invoice: a straight orward husiness transaction with the extra adree Kodacolor film worth about $£ 1.00$.
find

CAMERA ORDER FORN

d: Camera Offer. Freeposi. Teddington TWII \&BR.
Please send me the Rollei Pocketli
Electronic Flash-gun.
Electrose heque p.o. for $\mathcal{E} 19.95$
1 enclose che offer
(payable to
Films accepted on Standard Terms of Business (available on request)
From Wireless World
COLOUR PHOTO SERVICE,
Freepost, Teddington, TW11 8BR
NAME Iplease

Name! !pleas
Address....
ADDRESS

WIRELESS WORLD. AUGUST 1979
electronic kits of distinction from PITEithinis.
DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER

WIRELESS WORLD, AUGUST

$200+200$ watt AMPIIFIER

400W rms continuous - - 800W peak 0.03% THD at FULL power!
PLUS all the following features too!

PSI 4002 STUDIO MODEL

READ THE REVIEW IN SOUND INTERNATIONAL DEC 78

TRANSCENDENT 2000

 SINGLE BOARD SYNTHESIZER

COMPLETE KIT ONLY £49.50 + VAT

MPA200 100W MIXER / ȦMPLIFIER

COMPLETE KIT ONLY $\varepsilon 49.90$ + VAT

All kits also available as separate packs (e.g.
P.C.B. component sets, hardware sets, etc.).
Prices in P.C.B. component sets, hardu
Prices in FREE CATALOGUE.

EXPORT A SPECIALITY!

Value Added Tax not included in prices UK Carriage FREE
 and V A T raie changes excuata
 ES COUNT TER: II I You Prefeer to collect your kit tit
 FOR FURTHER INFORMATION PLEASE WRITE OR FOR FURTHER INFORMATION PLEASE WRITE OR

POWERTRAN ELECTRONICS

[^2]

Which Mierocomputer System offers you a choice of CPU?

It has long been established that for a particular application there is an optimum microprocessor, but the purchase of a new Microprocessor Development System for each application is prohibitively expensive With the Quarndon Microcomputer System only the cpu board has to be changed. Each high-performance microcomputer board, using an 8080A Z80, 2650, or 8085A as cpu can be used with an extensive common range of memory and interface boards, including our new high-performance fixed/floating point Arithmetic Processing Board.
The Quarndon QMS System provides true economy, allowing a change of cpu with a minimum of expenditure on new hardware.

QUARNDON ELECTRONICS LTD

SLACK LANK-DERBY DTH 8HD
Telephone: DERBY 32651 Teles: 37163 (Quarmon Desty)

ELECTRONIC EQUIPMENT CO.

SPECIALITIES CORPORATION

ASSEMBLED LATCHED COUNTER MODULES

止
 Sin sin ows sivtit

SINTE

WIRELESS WORLD AUGUST 1979

Z \& \| AERO SERVICES LTD. Tel. 7275641 Telex 261306

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

Price complort with prossod ateol
carrying case and test leadz Packing and postage.

£10.50

TYPE U4323
COMBINED WITH SPOT FREQUENCY OSCILLATOR

THIS OFFER IS VALID ONLY FOR RODERS ACCM ARANIE BY REMITANCE
WHICH SHOULD INCLUDE DELVET CHARES AS INDICATED ANO 8%
ww - 053 FOR FURTHER DETALLS

TESTING AMPLIFIER OUALITY YOU NEED A SIGNAL WITHOUT DISTORTION

distortioniess. hat only the most sophisticated alyser can detectit.

Spec. Sine wave distortion below. 0015% output Iv $£ 36.00$ attenuation into 600 ohms . Square wave
alternative.

TELERADIO ELECTRONICS 325 FORE STREET, EDMONTON, LONDON N9 OPE 325 FORE STREET, EDMONTON, LONDON N9 OF
$01-8073719$ Closed Thursdays. S. A. E. for lists. $01-8073719$ Closed Thursdays. S.A.E.

FOTOLAK

positive light sensitive aerosol lacquer

$$
\begin{aligned}
& \text { FOTOLLKK } \\
& \text { Developer }
\end{aligned}
$$

Plain Copper-clad Fibre-glass.
and
con

速 now
 Collected Circards

 No.3!This third book in Wireless World's popular series will be welcomed by all concerned with designing, using and understanding electrenic circuits. It comprises information previously included in the third ten sets of included in the third ten sets of
Wireless World's highly successful Wireless World's highly successful
Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. The book follows on from Circuit Designs Nos. 1 and 2. It is magazine size in hard cover and contains ten sets of Circards plus additional information and an explanatory information and an explanatory
introduction. Like its predecessors, introduction. Like its predecessors,
it may soon be difficult to obtain, it may soon be difficult to obtain,
so you are advised to order your so you are advised to order your
copy without delay copy without delay.
Voltage to frequency converters. Amplitude modulators.
Reference Circuits.
Voltage regulators. RC oscillators-part 1. RC oscillators-part 2. C.M.O.S. - part 1. C.M.O.S. - part 2. Analogue multipliers. R.m.s./ log./ power law circuits

PWilliams/JCarruthers/JHEvans/JKinsler

A WRELESS WORLD PUBLICATION

wireless world

General Sales Department, IPC Busincess Press Ltd.
Recom_CP

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION

Wireless World Subscription Order Form Wireless World, August 1979 ww 968
UK subscription rates USA \& Canada subscription rates
1 year: £ 7.00
1 year: $\$ 23.40$
Other Areas 1 year: $£ 9.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value

Name.
Address

\qquad
$\sqrt{\text { DOATA PRECISION }}$
Model 935

3½ digit, LCD display DIGITAL MULTIMETER

HANDY-easy to hold, to carry, to use, to read. Always at hand to make difficult measurements easy
VERSATLLE- all the functions and ranges you need. . 29 in all: volts and amps,
and d.c., switchabbe Hi and Lo ohms.
TOUCH built
TOUGH - built to take the rough and tumble
of field service and survive normally disasof field service and survive normally disas
trous overloads the 935 will stay in cal. PRECISE-basic 0.1% d.c. accuracy-better than many bench modeles!
VISIBLE-big, clear, high contrast $31 / 2$ digit LCD display, readable anywhere. $1 / 2$ characters.
EXPANDABLE-accessories extend measurements to $1000 \mathrm{~A}, 40 \mathrm{KV}$, r.f. at 700 MHz or temperature from -60 to $+150^{\circ} \mathrm{C}$. INEXPENSIVE-the 935 has the lowest price tag of any high performance hand-held DMM at $£ 99$ U.K. mainland delivered exc. VAT. It uses a low cost PP9 battery which an give up to 200 hours use See why your next multimeter should be a Get the leatet now
Get the leaflet now from:

Farnell
 International

FARNELI INTERNATIONAL INSTRUMENTS LIMITE WETHERBY. WEST YORKSHRE LS22 4DH TEL:0937 63541 - TELEX 557294 FARIST for your money.

The new Scopex 4D-10B.

The $4 D-10 B$ is a great newcomer to the Scopex range. Like all Scopex products it's extremely reliable, engineered o the highest standards and remarkably easy to use: a significant 40% better than most and there are important new features including:-
\lceil scopex sales, - - - - - -
-XY facility with fully matched sensitivities from 10 mV to $50 \mathrm{~V} / \mathrm{cm}$ on both X and Y channels utilising CMOS

- Z modulation for brightening or dimming the trace.

Plus full 10 MHz scan over the complete screen area. Trace locate and IV field trigger
Finally there's free delivery in the UK mainland
and the price- $£ 210$ excluding VAT
That's a lot of scope for very little money.
Also available, standard rack mount model
L-

Large Quantity of HONEYWELL VDUs model range 7700

AND THE PRICE $£ 260$ each including massive documentation.

NORWOOD ROAD, READING TELEPHONE NO. READING 669656
(2nd turning left past Reading Technical College in King's. Road then first right - look for "Spoked Wheel" on right)

find out about

THE NEW $\square \mathrm{B} \quad \mathrm{B} \mathrm{C}$
 INTERNATIONAL
 semiconductor INDEXES

Accepted as the finest books of their kind. Worldwide usage. for testing and primary selection purposes. Maximum ratings and major characteristics of a very
wide range of discrete and integrated devices. Over 25,000 entries in each volume including USA, European and Japanese sources. Each single line entry includes references from which terminations, possible substitutes and alternative manufacturers may be obtained.
The loose-leaf binder form allows easy updating by our subscriber up-date service - free for the first year

Electronic BrokersVo. I in Second User

1608A LCR Bridge. Accuracy
typically .05\% …. $£ 1450$ MARCONI INSTS.
Univ Bridgetfi3i3... £395 Univ. Bridge TF 1313 . $\mathbf{E 3 9 5}$ WAYNE KERR
WAN Univ. Bridge B221 (0.1\%)

CALIBRATION EQUIPMENT

 HEWLETT PACKARDDC Voltage Source \& Differential
Voltmeter 740 E
E850 Voltmeter $740 B$
DC Voltage Source \& 8 AC/DC

DC LUKE DC Voltage Calibrator 332A $883 \mathrm{ABAC} / \mathrm{DC}$ Differential Volttektronix | Time Mark Generator $184 £ 275$ |
| :--- |
| Time Mark | Time Mark Generator 2901 5 nS Pulse Generator 2101 Puise Generator 109 … $\mathbf{£ 3 2 0}$

SOUND LEVEL

METERS

GENERAL RADIO
Portabe Sound Level Meter
1565 Sol
f225

Portabie Sound Level Meter
1983
1933 \& 1935 Portabie Sound Level Meter with data cassente
recorder
$£ 2600$ recorder
portable
1981 BRUEL \& KJAER 2607 Low Noise Measuring
Amplifiers. ABC \& D weighting
$£ 1200$

DIGITAL

COUNTERS
GOULD ADVANCE
500 MHz Counter TC15
+
15P1
£495 80 MHz Counter TC 17 or TC 1795 80 MHz Counter TC17 or TC17A
10 MHz Counter TC2 21.
E195 LUKE
 125MHz Multi-Function Counter 520 MHz Communications
Counter 1920A-06 E490

$$
\mathrm{Pr}
$$

$$
\begin{aligned}
& \text { PHILIPS } \\
& \text { 80MHZ Timer Counter PM6612 } \\
& \ldots
\end{aligned}
$$ 1 Hzz Timer Counter PM6615 80MHz Freq. Counter PM661 512 MHz Freq. Counter PM6645 520 MHz Automatic

Counters PM664
F
Freq.
E305

DIIGITAL

VOLTMETERS \& MULTIMETERS ADVANCE \qquad fluk
1/2 digit D.M.M. 8040A-01
$41 / 2$ digit D.M.M. 8600 A $\quad £ 290$ 41/2digit D.M.M. 8600A E290
$41 / 2$ digit D.M.M. $8600 A-01$
 HEWLETT PACKARD $\begin{aligned} & \text { HEWLETT PACKARD } \\ & 5 / 1 / \text { difit D.M.M. } 34702 \mathrm{~A} \\ & \text { 34740A }\end{aligned}+$ PHILIPS 4 digit D.M.M. PM. 2424 £300
$41 / 2$ digit OC. D.V. PM 2443
 SCHLUMBERGER
SOLARTRON
SOLARTRON
$5 / 1 / 2$ digit Digital Multimeter A243
$41 / 2$ digit D.M.M. 7050

OSCILLOSCOPES
ADVANCE
OS2200 Dual
OS2200 Dual Trace Storage with
delayed time base cossor
 4100 Dual trace 75 MHz £695 DYNAMCO
30MHz. Dual Trace. 7100

PHILIPS
PHHZ Min Miscope Battery/Mains
PM3010
Рм 3010
S.E. LABS

35 MHZ D.T. Scope SM 113 | TEKTRONIX |
| :---: |
| 24MHz Dual Trace Bench. |
| + E35 |
| + EAB |

 24 MHz D.T. Bench. $545 \mathrm{~B}+\mathrm{CA}$
50 MHz D.T. Bench. $547+1 \mathrm{~A} 1$
m

 AM/FM Sig. Gen TF995B/2 12 AM/FM Sig. Gen TF995B/2
AM /FM Sig. Gen. TF2006 675 Two Tone Source TF2005R ${ }^{\text {E875 }}$
 A.F. Sciliator TF2000
R.C. . Scillatorf 1011
A.F. Oscillator TF2100 A.F. Oscillator TF2100 $£ 150$
10MHz D.T. Battery Miniscope OMHz D.T. Battery Miniscope
326 $£ 900$
 Spectrum Analyser Plug in 1130
 7011 Digital Delay ….............. $£ 675$ HEWLETT PACKARD

WAVETEK
Programmable Phase Meter 775

OSCILLOSCOPE PROBES ELECTRONIC BROKER (NEW) $\times 1$ Probe Kit EB90

SIGNAL SOURCES
ADVANCE
Sine/Square Oscillator H1E ${ }^{\text {E }}$ Low Dist. Oscillator SG68A $£ 80$ FLuKE Freq. Synthesiser 6160A/DX
................ $£ 875$
HEWLETT PACKARD AM/FM. Generator 202H $£ 495$
VHF Sig. Generator 6080 £495
VHF Sig VHF Sig. Generator 608 E £675
Varianle Phase
612 A UHF Signal Generator,
540.1230 MHz
 AM/FM Sig. Gen. TF995A/2N1
 PHILIPS PHILPS Signal Generator
AM/FM
PM5326X
A PM5326X
AM/FM Signal Generator
PM5324
 SIGN/ROGERS
LOW Distortion Osc Low Distortion Oscillator S324

MISCELLANEOUS

AVO/BPL
 Electronic Multimeter EA 113
BRADLEY
D.C. Voltag

E.N.I. gertsch GERTSCH
Complex Ratio Bridge CR1B
E600 GENERAL RADIO Vibration Analyser 1911A $\mathbf{£ 2 1 0 0}$ HEWLETT PACKARD

 Microwave FreG. Converter
2590 B MARCONI INSTRUMENT A.F. Transmission Test
Set Tr2332
M.F. Transmission Te
 Quantization Distortion Tester
TF2343 Deviation Meter TF791D $£ 195$
Electronic Voltmeters TF 2604

 Grey Scale Generator TF $29 .$.
PHILIPS
Pulse Generator PM5712
Pulse Generator PM5715
Pulse Genten
$\mathbf{£ 5 7 5}$
Pulse Generator PM5775 $\begin{aligned} & \text { E600 } \\ & \text { Pulse Generator PM577 } \\ & \text { E700 }\end{aligned}$
Pulse Generator PM576
Pattern Generator PM5501
8700
Wow \& Flutter PM6307

DEC EQUIPMENT

COMPUTER PERIPHERALS

 VIDEO TAPE
SPECIAL PURCHASE

NEW KEYBOARDS

SURPLUS KEYBOARDS

Electronic Brokers

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel. Godstone (0883) 843221

,

JES AUDIO INSTRUMENTATION

 Mustrated the Si453 Audio Oscillator SPECIAL FEATURES:\star very low distortion content-less than 0.03\%

- an output conforming to RIAA recording characteristic
- square wave output of fast rise time
£ 70.00
 J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON. W. YORKS. BD19 5LA.

AND NOW THE GOOD NEWS
SYM-1
A fully assembled and completely integrated system, the
SYM-1 is the latest advance in microprocessor systems. SYM-1 is the latest advance in microprocessor systems.
Contains the 65028 -Bit microprocessor whose advanced Contains the
architectural features have made it one of the largest
selling 'micros' on the market: selling 'micros' on the market:
WAS $£ 199.00$ NOW ONLY $£ 160.00+15 \%$ VAT
BAS-1 8K Basic
This system is now available at an incredible new price. WAS $£ 147.00 \quad$ NOW ONLY $£ 75.00+15 \%$ VAT KTM-2
This Keyboard Terminal Module works with any RS232
computer (SYM-1, etc.) computer (SYM-1, etc.) up to 9600 BAUD. WAS $£ 276.00 \quad$ NOW ONLY $£ 225.00+15 \%$ VAT
For details on these and other systems and services
ontact:
NEWBEAR
40 Bartholomew Street, Newbury, Berkshire RG14 5LL
Telephone: Newbury ($\mathbf{0 6 3 5}$) 30505

WW - 076 FOR FURTHER DETAILS

Sameson's

9810 CHAPEL ST., LONDON, N.W. 1
1-723 7851

 Hition

KEYBOARD TERMINAL

 (RF Modulator required.).
The eharacters can be any of the 96 ASC11 alphanumerics and any of the 32
special

 assembled and tested. Plus $£ 2$ P\&P (Monitor not inc
Deale O.E.M. enquires invited
To

Memutronias
 WW-076 FOR FURTHER DETALLS

```
Advertisements accepted
4p to }12\mathrm{ noon Friday, July
27 for September issue
$ subje
```

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre ($\mathbf{m i n} .3 \mathrm{~cm}$). BOX NUMBERS: 70 p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.)
PHONE: Neil McDonnell $01-2618508$ Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Inner London Education Authority

TECHNICIAN

Grade 4
required at South Thames College, Wandsworth High Street, SW18 2PP. Tel. 8702241 . For Radio, Television cesses Dept.
Applicants should have at least ONC, OND, 2 "A" levels and some "O" levels, ordinary City and Guilds or equivalent qualifications and a minimum of 7 years experience (including training period). Weighting.
Application form and further details available from and returnable to the Vice-Principal at the above address within 14 days of the-appearance of this
advertisement.

Radio Communications Electronics Engineers and Software Designers
Mid-Sussex - S.W. London Salaries up to $£ 7,000$ To join our expanding R\&D Laboratories covering a wide range of R.F spectrum, from L.F. to V.H.F. Equipments include transmitters and
receivers for mar monitoring remote computer controlled systems. design, analogue ors should have experience in transmitter or receiver Software Designers should be experienced Programmers with an . Atträctive salaries are complemented by excellent prospects and
generous benefits. Contact The Personnel Manager, Redifon Telecommunications $01-8747281$ (reverse charges).

PRODUCT SUPPORT

SUSSEX
M.E.L. is the professional equipment division of the International Philips Electronic Group and is an established world leader in the design and
manufacturing of a wide range of Electronic Equipments manufacturing of a wide range of electronic Equipments our product support activities, the following vacancies ave arisen

PRODUCT SUPPORT

 ENGINEERSTo deal with 'post design' problems, resulting from the production and in service use of a wide variety of equip-
ments and systems including military Radio and Radar. Engineers with a good knowledge of electronics up to H.N.C. standard will find these positions have the interest
and challenge they require. Experience of similar work and challenge they require. Experience of similar work
within H.M. forces and lor knowledge of M.O.D. procedures would be extremely useful.

SERVICE ENGINEERS
LONDONBOROUGH
OF HARINGEY
PART-TIIME ASSISTANT
HEARING AND TECALAD required at Blanche Novile Special

 Grade/ Salary: Pro rata to N.J.C.
Technical Grade $2-73,600$ per
 annum risin
andusiv.
Ancture

 Terchniciarnsiticate for Electrical
Engineering/Mechanical Shop
Enginerering. or othher equivatent
qualification. OR a minimum of 10

These positions require applicants willing to use their own initiative and skills in carrying out diagnostic fault
finding, repairs and retest of a variety of equipments inding, repairs and retest of a variety of equipments involve some liaison with customers. A good general knowledge of electronics, including emi-conductors circuits, is essential and H.M. Services nd/3rd line maintenance experience will be especially These positions attract good starting salaries and excellent conditions of employment in a stimulating
modern working environment and generous relocation modern working environment and generous relocation
expenses will be given where appropriate. xpenses will be given where appropriate, MR. A.G.BUDD, Personnel Officer, M.E.L., Manor Royal, Crawley, Sussex. Tel. Crawley 28787 Ext. 364

A leading manuracturar of artificial limbs and dids tor the disgobled based in South-Wes

ELECTRONICS DESIGN

ENGINEER

Applicants should have experience in low-noíse amplifier design such as in audio

ELECTRONICS TECHNICIAN

 intitial design diagrams, in close liaison with the p pi.
and with the minimum of supervision, is essential.
The successtul candidate will ultimately be expected to take over the task of
laying out printed circuit boards for the development department and hence initia experience in this field would be an advantage.
ONC or C \& G preferred. atthough censideration will be given it applicants
working towwards a qualificicition and wishing to continue their stucios.
$\begin{aligned} & \text { For either. position apply in writing, stating age, qualifications, experience and } \\ & \text { present salary to Box No. WWW } 9459 .\end{aligned}$
(9459)

A leading company in the phototypesetting industry requires

SENIOR SYSTEMS TES
 AND COMMISSIONING
 ENGINEERS

Phone tor appiciation form ${ }^{\text {to }}$ M
dATEK SYSTEMS LTD.
349 Harrow Road, Wembley, Middlesex

What's an electronics enthusiast like you doing in an advertisement like this?

We reckon that if you'rea regular reader of this magazine, you might very well be the sort of man or woman who'd be interested in joining Marconi Avionics as an Electrical Inspector.
We say this with some confidence because if you're used to building up your own equipment, you're probably well used to finding your way round electronic circuits and wiring and that's just the sort of background we're looking for.

As an Electrical Inspector with us you'll be involved in the inspection of printed circuit boards and assemblies against drawings on a wide range of equipment. Mind you, this equipment will be considerably more complex than any you're likely to have worked on previously, for at Borehamwood we're engaged on a variety of
exciting and challenging projects relating to advanced electronic systems and hardware for such technically sophisticated aircraft as Nimrod and Tornado. But, provided you have a good basic background knowledge of electronic circuitry, we can soon train you to take your place in one of our inspection teams.
We offer a good salary, an attractive range of benefits and the opportunity to make your hobby pay off both financially and in terms of job satisfaction.
Write with details of your experience to Chris Hill at Marconi Avionics Limited FREEPOST, Elstree Way, Borehamwood, Herts WD61BR Telephone 01-953 2030 ext 3449 during office hours or 01-207 3455 anytime.

MARCONI

Appointments
WIRELESS WORLD, AUGUST 1979

Engineering Support Programmier

STC are heavily committed to the advanced uses of computer systems in telecommunications, both in their
telephony products and in their manufacturing processes. telephony products and in their manufacturing processes.
Computer Aided Design is a well developed and expanding technique.
The range of projects is exceptional and firm development plans open up even more opportunities for male and female Programmers with an interest and aptitude for CAD.
Current and planned hardware includes a Honeywell 66/40 plus Honeywell Level 6, PDP, Data General and CMC minis. You should be either an Electronic Engineer with experience of computer systems, or a Programmer with a background in scientific packages for engineering
experience is the expected minimum.
You will work in a small team of Engineers and Programmers providing support to users of large CAD packages and providing CAD engineering systems for use under timesharing. expected contribution. There are a wide range of company benefits including relocation assistance. Location is on the edge of London/Herts with excellent road and rail communications.
Please telephone for an application form or write with full details to Mr. R. Edmonds-Brown, Recruitment Department,
Standard Telephones and Cables Limited, Oakleigh Road

Q Changing the face

of communications worldwide \square_{9415}

ELECTRICAL AND ELECTRONICS ENGINEER

World leader in technical information is planning a new expansion of its patents services for the electrical and electronics industries.

Engineers are required for various editorial positions. Duties will comprise selecting, editing and coding information for subsequeth pubstructive ideas.

A degree or equivalent qualification in electrical or electronics engineering is essential, together with industrial experience. A reading ability in German, French, preferable. Preferred ages are 25-40.

Realistic salaries are offered and benefits are those associated with a market leader in publishing.

Please write in confidence with abridged curriculum vitae quoting ELEC/E to: General Manager
DERWENT PUBLICATIONS LTD
Rochdale House
128 Theobalds Road
London, WC1X 8RP
 ${ }^{99055}$

TOP JOBS IN ELECTRONICS Posts in Computers, Medical.
Coms.e. .et. ONC to Ph. CD . Free
service. Phone or write BUREAUTECH AGY, 46 SELVAGE LANE,
LONDON, NW7. $01-959$ LOND.
3517.

Avionics

DevelopmentEn	TestEngineers
	\%mem

DevelopmentEngineers TestEngineers
Electronic and part of the International Philips develop and manufacture a wide range of equipment. expanding our Development team of professional Development Engineers who are currently
involved in a variety of Development activities.

Digital Signal Processing
Display Systems
Airborne Radar
Microwave Navigation Systems

We offer very attractive salaries, benefits and conditions for all positions including a mortgage subsidy where appropriate
 he opportunity Contact: ALISTAIR BUDD- PERSONNEL OFFICER-NOW FOR AN APPLICATION FORM. M.E.L
MANORRRONAL, CRAWLEY, SUSSEX. TEL: CRAWEYY
28787 EXT. 364 . MANOR ROYAL
2878 EXT . 644.

MEL

ELECTRONIC SERVICE ENGINEERS LONDON - BRISTOL - MANCHESTER - GLASGOW
Our Company specialises in both sales and servicing of
Discotheque Sound and Lighting equipment. We currently have vacancies for engineers who have had pe cuivus ent
perience of either Hifi, Studio, PA or similar equipment.
Excellen Excellent salary plus quarterly bonus and P.P.P.
Please telephone or write to Andree Mead for further details.
(948)
Roger Squire's
 Herk Road, Barnet,
Herts. EN5 $5 S A$,
Telephone: 01.441191

Appointments

Five Years in Electronics or Instrumentation?

Get into Systems Engineering c. $£ 5,250$
 Birmingham

 Inemational systens Eningeaing , work.

Electronic Engineer
Your responsibilities will be to design and
build special purpose electronic devicess,
including microprocessor based systems.
prototypes and undertake fault finding and
maintenance on electronic workshop equipment.

Instrumentation Engineer

You will have a broad-based role in
designing and making parts of
instrumentation systems and building special instrumentation test rigs. Other aspects of
the iob include various the job include various calibration and test
routines and the maintenance of machine routines and the maintenance of machine
tool equipment. You will also be involved in
devising diagnostic procedures for the devising d
Section. For both vacancies you should be aged $25+$
have ONC level qualifications in relevant disciplines, and five yearas' experience in
electronic /instrumentation electronic /instrumentation construction
development. You should have sound
practical skills and the willingness to absorb
and use new technology.
Salary will depend on experience and qualifications and we can also offer the
benefits expected of a major international benefits expec
organisation.
Please write or telephone for an application form to:
Mrs. P. M. Carvosso
Mrs. P. M. Carvosso
CADBURY SCHWEPPES LTD
1-10 Connaught Place, London W2 2EX
Tel. No. 01-262 1212, ext. 345
Tel. No. 01-2.62 1212, , ext. 345 .
Interviews will be held in Birmingham.
Cadbury Schweppes

mirelss worlo. augus TECHNICIAN required for ar atiod.t-rm contract of
ne year to assist in research work
ne One year to assist in reseanch work
The person appointed should be pre
pared to travel
. pared to travel.
Salary: $£ 4773$ - $£ 5073$ including Supplement per annum.
The person apoointed have at
least an ONC or OND, but an HNC in ligital electronicico or telecemmuncic
dions will be prefered. Experience
tit tions will be preferreded Experience in
prototype constuction inter
pretation of developmental circuit

 munications systems, and measure
ment and control tecchiques wirien
utisis eddvanced methods of digital
processing Application forms and further details
avaiiable from the Instituet Secro-

then this could be just the job you're looking for. It offers variety and real opportunity to apply both skill and design initiative to the solution of a whole range of technical problems of a one-off nature.

We are:

* a leading pharmaceutical company with worldwide interests.

You will:

* help to design, modify and where necessary repair advanced scientific instruments and computers in the Physical Chemistry Department.

Probably aged mid 20's, male or female you should ideally have:

* formal training up to HNC or equivalent
* an interest in physics or chemistry
* sound practical experience of electronics.

We offer:

* a competitive salary dependent upon experience and ability
* day release opportunities for further study * flextime working

Interested? Then please write, or telephone for further details/application form to P. C. Anderson aboratories Assistant, The Wellcome Research BR3 3BS. Tel: 01-658 2211, ext. 218.

Wellcome

RESEARCH

ASSISTANT мICROPROCESSORS
FISONS have a vacancy in the Statistics Section at Levington Research
Station near Ioswich for a Research Assither Station near Ipswich for a Research Assistant to work on the
application of mini computer (microprocessor) technology to scientific application of mini computer (microprocessor) technology to soientific
and industrial research proeiects. This work bridges the gap between
electronics and cond control of chemical putiterised mathematical methods used in the
agricultural systems.

Ideally, applicants should have at least " A " level Maths plus a keen
practical interest in ming and other more advanced methods will be given. The in program-
 rapidly y developing field in which there are opportunities for advance
ment.

If this iob appeals to you please write for an application form to Mike Sharp, Divisional Personnel Officer
Lisonngtom Research Station
Levilizer Divich
Isswin
FISONS
FERTILIZER DIVISION

Appointments
WIRELESS WORLD, AUGUST 1979 The Development and Production Departm
Ltd., situated in southwark, has vacancies fo

Senior Development Engineers

 andDevelopment Engineers
to take part in the continuing development of specia
munications equipment for use in the Company system successful candidates will be engaged in analogue or digital electronic design and microprocessor applications covering equipment for us on wideband telephone, data and telegraph switching systems plus some radio applications.
Applicants for the Senior Development Engineer positions should be Professional Engineers with an Engineering degree or equivalen
qualification and have at least five years relevant development experience.
Applicants for the Development Engineer positions should be qualified at least to HNC or equivalent in the appropriate discipline and have not less than three years relevant experience
Salaries are on a rising scale, with yearly reviews, and the Company
offer a wide range of benefits including a pension scheme, subsidised staff restaurant, and flexible working hours.

For an application form please contact:
Miss C. Morgan, Cable \& Wireless Ltd.,
Development \& Production Department,
114 Great Suffolk Street, London, SE1 0
Cable \& Wireless
Helps the world communicate

JEVON AREA HEALTH AUTHORITY PLYMOUTH HEALTH DISTRICT
Department of Medical Physics and Biomedical Engineering

ELECTRONICS TECHNICIAN

required for interesting post in medical electronics. The
person appointed will join a small team in a well-equipped laboratory. He or she will be responsible to a graduate
electronics engineer for the maintenance of a wide range o patient-orientated electronic equipment. Development of special purpose systems is undertaken and safety an
purchase decisions are made en new equipment.
The post offered on two grades, dependent o
qualifications
(a) Medical Physics Technician IV for candidates with a City and Guilds Final Certificate in a relevant subject or its

Salary scale M.P.T.IV $£ 3,069$ rising by 9 increments to
$£ 4,134$ per annum. Increase pending.
(b) Medical Physics Technician III for candidates with a
relevant ONC or HNC plus 3 years' relevant technical experience.
Salary scale M.P.T.III $£ 3,744$ rising by 7 increments to um. Increase pending.
will be given. The enest is not essential as further training and Cornwall and necessitates a current driving licence,
Application forms available from Mrs W. E Taylor Senior Administrative Assistant, North Friary House, Senior Administrative Assistant, North Friary House,
Greenbank Terrace, Plymouth, PL4 80Q. Please enclose a

to all
 Computer Electronics Service Engineers...

 Move to Linotype-Paul and we'll really put wheels under you - not just in terms of fast
 moving career prospects, but we'll also throw in a company car.
 "OK, so does everyone else." you say. "What's
 so special about your company?"
 For a start, we're international leaders in the design and manufacture of a product range that's taking he world by storm - compurersed phootypesetting equipment and its associated peripherals. And that's engineers, not necessarily in phed hat's fairly new, but in computer technology, digital electronics VDUs or other peripheral devic
 Linotype-Paul

AUDIO + VIDEO LTD.
 VIDEO \& TELECINE 0
 OPERATORS

required for Ampex and RCA Quad VTRs and Sintel and RCA.
Telecine Channels for both our day and night shifts. Persons with requisite television engineering background may Contac

Peter Horton
0
Audio + Video Limited
Charlotte Street, London W1P 1LX
Telephone: 01 -580 7161

VERSATILE?
 GOOD

CSC (UK) Limited are seeking an electronics engineer who could Duties would include

* Organisation and participation of electronic exhibitions
* Technical back-up for our sales de
\star T Technical back-up for our sales department
\star Lemonstrations
\star Some sevrice and repar work on our products
\star Involvement in advertising and marketing
We are a small but rapidly expanding subsidiary of a large American
Corporation situated in new premises in the pleasant market town of Corporation situated in new premises in the pleasant market town of
Saffron Walden. In return for the required skills wis. Safrion walden. In return for the required skills, we can guarantee
endloss variety within the ob, an extremely convivial working
atmosphere, and the benefits, including use of a car normally atmosphere, and the benefits, including use of a car cor workally
atrributed to a company of our reputation. Salary negotiable circa atributed
£5,000.

Appointments
WIRELESS WORLD, AUGUST 1979
WANTED R.F. ENGINEER A small group of companies in the
Electronic /Electrical business based in South-East London require an En-
gineen with experienece in A.F. power supplies and digital and analogut
lecoctronics. This is a growth position nit whill the succosssful applicant wh
initill trave thoughout Europe
sevicing

TV/AUDIO SERVICE ENGINEERS UP TO £5,500 BASIC + OVERTIME + ANNUAL BONUS An extensive expansion programme has created additional vacancios for fully
experienced Service Engineers to work in our modern, well-equipped Service Department in Wattord.
Qualifications to City \& Guilds Level together with recent experience of servicing
 In addition to a very high basic salary, the benefits package includes an annual
bonus, around 10%, three weeks' holiday rising to tour weeks, free Life bonus, around 10%, three weeks, holiday rising to four wee
Assurance and a contributory Pension Scheme, plus staff discounts. Prospocts for promotion in this young and rapidly expanding Company ar
excellent.

Please teleenhone Nick Dosanih, Service Manager, o
Watford 40566 . Mitsubishi Electric (U.K.) Ltd.
\therefore mirsuilishl ELECTRIC

ENGINEERS
Are you interested in the new Electronics?
At Rank Xerox we are doing munch more ethan
talkeng about is that you have the interests to learn
alcouprocessors. Our current talking about microprocesssors. Our current Hent Compunury Xproce ssor-lasect and our arent Company, Xcrox, has ser up a modernn hic forcfront of technology by developing the Wc nowneed Engincerstojojoinour Electronic Componenent Function at Welwyn to help ronic componnchts. These cover the range from mimeroprocessors, memorics and opto-
lectronic devices througl to
to capacitors and drannsformers.
you are interestect in getting into the mainnuponent currently working in elcectronic design this is an opportumity to oltain an inderderh know-
ledge of clectromic connponcents, and how to ledelye of tectrromic
build
bin reclialility. There are vacancies for looth scnior and jumior case phonc j cand cates of either sex. ranapplication form and coun 0908312870 Oinh or white to him at Rank Xerox Engincering Group, Monks Way, Linford Wooch, Milton Kreypec MKI4 LLA.
In the cecring and
In the evening and at weekends an answering
stricc is available.

RANK XEROX

ENGINEERING GROUP

\qquad

MEDICAL PHYYSICS

 TECHNICIAN II OR III

Do You See YOUR Future in Broadcasting?
 We can offer you a career with real job interest.

- If you'd like worldwide travel, customer contact and a high level of job responsibility
- If you're self-motivated and able to work (after equipment training) on complex broadcast equipment inimum of supervision
- If you're dissatisfied with the routine and predictability of your job, and looking for variety and a strong
element of problem solving.

At Pye TVT we develop, manufacture and sell professional broadcast Wequipment, with the emphasis on expor We're looking for enthusiastic engineer
at all levels and in all areas, from development of studio equipment transmitters through systems testing to planning and after sales activities.
Telephone Alison Millar on Cambricatio (0223) 45115 for an details.

Medical Physics Technicians (Electronics)
Your experience could lead to a happy experience in Hampstead.. working at the Roval Free Hospital, Britain's newest and larges
We offer an exp
Whancer an experienced Technician (Grade IV-Electronics) the electronic equipment, which will be used in both research and clinica
applications. This is ano
who holds a City and Guilds Final Technological a man or woman
Certicate in appropriate esubiects andind dideally has experigical Certificate in
nalo
naloge and digital circe in the use of both
design work, you will be expected to carryy out maintenance on y wid range of commercial appa
well-equipped workshop.
h addition to the salary of $£ 4098-£ 5142$ p.a. (including all experience), we offer a first-class working environtictions and choice of facilities which include a good staff restaurant, a social club
nod a brand new reccreation and lisure centre with swimming pool and bar.
If you'd like to find out more, write to the Personne epartment, The Royal Free Hospital, Pond Street, NW3, or
telepenho
0761.
Camden
Camden \& Islington Area Health Authority (T)

Salford Area Health Authority (Teaching)
(University of Manchester School of Medicine)
HOPE HOSPITAL
Eccles Old Road
SALFORD
MEDICAL PHYSICS TECHNICIAN
(Electronics) GRADE III
Appications are invited from sultably qualified and experienced electronics technicians for a post in the Medical Physiss
Department at Hope Hospital subject to rapid expansion Duties will include the repair, planned maintenance and safety
checking of patient orientated and clinical laborator checking of patient orientated and Clinical laboratory equipmen
throughout the Salford A rea. Modification and development of
tinstran hroughout the Salford Area. Modification and development of Applicants should hold ONC or HNC and have a minimum of alary scales induring ion Salary scales including supplements $£ 3744-£ 4788$ (increase
pending). Application forms from the Sector Personnel Oofficer, pending). Application torms from the Sector Personnel Officer,
Hope Hospatil Further iformation if necessary from Dr F. Cave
Senior Physicist, Hope Hospital.

Appointments

Constructive and Profitable!
NOW WHAT ' A ' levels, OND, C\&G of London Institute . . .? Are you thinking about a career in Electronics? If you have
Maths, Physics and English Language "O" Ievels then why not consider our technician Lis
This 2 -year full-time course gives you a qual ification This 2 -year fuil-time course gives you a qualification
recognised by industr - the Full Technological Certificate

- and also provides an entrance qualification for a degree and also provides an entrance qualification for a degr
course. Specialisations include Computer Engineering (indluding Microprocessorss, Sound Studio Engineering
and Radar and Microwaves. and Radar and Microwaves. Write to the Secretary, Department of Electronic and
Communications Engineering, Polytechnic of North Holloway Road. London N7 88B, for details,
The Polytechnic of North London (9406)

Galienkamp is a leading company in the laboratory equipment

Electrical Test Engineers

to fill posts in our expandin
One post will involve the examination in detail of the apparatus
which we sell and the specification of any modifications necessar which we sell and the specirication of any modifications necessary
to ensure that it meets our quality assurance requirements and to ensure that it meets our quality assurance requirements and
United Kingdom and foreign electrrical safety specifications. Experience of electrical testing is essential and experience of
testing to BS 3456 or to similar international specifications would testing to bs an advantage.
The other post will primarily involve the measurement of radio
interference levels and the specification of suitable suppression systems. Experience of electrical testing is essential and experience with BS800 or similar international specification
The work is in a modern, well equipped laboratory at our Head
Office building near Moorgate Tube and Liverpool Street statio A good starting salary is offered, plus four weeks' holiday,
subsidised staff restaurant and other benefits associated with a large company.
Please phone $01-2473211$ ext. 285 or write to Sarah Bramble Recrutment Officer, A. Gallenkamp \& Co. Ldd., P.O. Box
Technico House, Christopher Street, London EC2P 2 ER.
Gallenkamp

ELECTROBONIC

PRODUCTION TEST/ FAULT-FINDING ENGINEERS

c. $£ 4,500$

Electrosonic Ltd. is a leading company in the expanding fields and audio visual systems The Company, based at Charlton within easy reach of rural Kent, ofters an attractive
conditions of employment.
PRODUCTION TEST/FAULT-FINDING ENGINEERS: Engineers are required for a small batch production line and system testing/fault finding on a wide range of electronic equipment employing some of the latest digital, analogue and audio circuitry.
Applicants should have either experience in the testing/fault inding of electronic equipment or academic qualifications to
HNC or degree level. Suitable applicants will find opportunities for advancement ot higher paid technical support positions in the Company's software or hardware design teams and proje
engineering section after a period in the Test Department. SERVICE ENGINEERS/HIRE DEPT. ENGINEERS: Engineers are also required for fault finding and presentation work on the above equipment both in - company and on customer's premises.
Applications in writing, giving a resume of career to date',
addressed to: \mathbf{P}. W. Way, Production Director, ELECTROSONIC LTD., 815 Woolwich Road, LONDON, SE7 8LT. Tel: 01-855 1101.

DID MAGGIE LET YOU HAVE IT?
OF COURSE SHE DIDN'T

- IF YOU NEED IT -

Money in your pocket look at these
Applications Enginoor for London based American Co. Marufacturng MSI - LSS
integrated circuits. Good understanding of monolithic circuit functions, bit slice machines and 16 bit microprocessors. Sairrcould be intlifence system. The out
 interrogated by a central computer. Berks to $£ 9,000$ Senior Engineors for Technical Management of $£ 120,000$ projects i.e.
Hardware /Sottware aspects of a real time control system based on mini compute. Hardware/ Sottware aspects of a real time control sys
and state of the art Microoprocessors. Berks to $£ 8000$.
Logic Dosignors for specififation and design of Microprocessor systems and
peripheral controllers using custom built LS and MSI. Scotiand. Excellent salary. Tochnological Think Tank Boffs, i.e. pretty authoritative engineers to augment a
team who have produced some of the most advanced satellite communications and
 message
Berks.

Compurer Enginears for either technical support, permanents site, field service or | E17,000 for the Travel Anywhere ' $18 \mathrm{M} 360 / 370$ Variey |
| :--- |

Electronic. Blokes - anyone with
thousands of unpublished vacancies.
Charles Airey Associates

ELECTRONICS ENGINEERS

. $\mathbf{£ 6 , 0 0 0}+$ BONUS + FREE MEALS
Due to further expansion and internal promotions we urgently
require Senior Test Engineers. We
We rent a wide range of sophisticated electronic test equip ment, including Microprocessor based instruments to com Applicants must hav repute
Applicants must have a good all round knowledge of electroni
test equipment. Engineers with experience test equipment. Engineers with experience of the following
equipment types are particularly invited to apply
R.F. Test Equipment including Spectrum Analysers.

Oscilloscope
Digital Voltmeters
Acoustic Equipment (B \& K, C.E.L. etc).
Whilst academic qualifications to H.N.C. are desirable, applicants will have had at least three years' directly related experience.
The vacancies are internal and based at our modern fully equipped premises in N.W. London
The test equipment we stock is the finest available in the world and our engineers always have available the correct instru ments to repair and calibrate these equipments.
Write or telephone to
Bernard Ellett
Shirley Hoivingston HIRE LTD.
Shirley House, 27 Camden Road, London NW 1 9NR Tel. 01-267 3262

TELEVISION BROADCAST ENGINEER

We require an engineer to join the staff of a rapidly expanding

 minimum of three years' experience in broadcast teatd have with specific knowledge of Quad and Helical Scan, VTRs, Flying Spot Telecines and related systemThe candidate should be qualified to HNC, Full Technnical
Certificate, Degree or equivalent qualification. The jeb reports to the Technical Manager and the successful candidate will be responsible for maintenance of equipment, supervision of technical trainees and the installation of additional facilities.
High salary (level dependent upon experience and qualifica-
tions) plus normal benefits.
Please reply in confidence to
Mr. Tony Owers

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of
innovative design is used on communications test instruments and A.T.E. We have number of interesting opportunities in our Design, Production and Service Departments and we can offe attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more pease fill in th following details:-

Instruments Limited, FREEPOST' St. Albans, He
AL4 OBR. Tel: St Albans 59292

Marconi

 Mstruments

OUR TEST ENGINEERS KEEP THE WORLD TALKING

A closely knit team of highly professional engineers are currently developing a new radio systems project for an International Electronics Group who have a reputation for being leaders in advanced technology.

Due to the expansion of this development programme, our client now wishes to appoint two engineers, for radio frequency synthesis circuits.

These career positions will attract creative, self-motivated individuals who offer appropriate qualifications, sound practical experience and a keen interest in this type of work

The Company provides a first class remuneration package,
, excellent benefits and generous assistance with relocation, where necessary, to an attractive area 25 miles North of London.

For further details of these rewarding opportunities to enhance your present skills and progress in the world of advanced technology, please telephone or write to James T. Hayes quoting Ref. 2439.

Radio Systems Synthesizer/Oscillator Development Engineers

To £ $£ 000$

MarconiMobile Radio are putting out a call for Development/Systems Engineers and Test Engineers ...so put in a call to us

Marconi Mobile Radio are a leading manufacturer of radio telephone equipment which is used extensively throughout commerce, industry and the public services. With continuing expansion of our business, both in the UK and overseas, we are looking for additional experienced Engineers to join teams working on the development of advanced AM/FM, VHFUHF mobile radio equipment and systems.

So why not put in a call to us and we'll make an appointment to discuss the excellent portunities available to experienced men and women at our site in Baddow, near Chelmsford. Right now we need
Development/Systems

We have vacancies at the BBC Equipment
Department for Senior Laboratory Technicians and Laboratory Technicians to make functional and test to specification, newly manufactured broadcast equipment to SENIOR
LABORATORY TECHNICIANS Salary between $£ 4630$ and $£ 5020$, rising to
$£ 6295$ per annum. Successful candid
Successful candidates will have at least
3 years experience and be qualified to HNC
or C\&G FT.C. (Telecoms or Electronics) or C\&G FT.C. (Telecoms or Electronics)
level.
LABORATORY TECHNICIANS Salary between $£ 4185$ and $£ 4535$, rising to
$£ 5060$ per Successful candid
Successful candidates. male or female, will
have had $1-2$ years' experience have had 1-2 years' experience and at least
O.N.C. or Final C\&G (Telecoms or Electronics). Candidates less qualified or experienced may start at a junior grade. The work is based at Chiswick with good accessibility by car or public transport, with staff restaurant and car parking facilities
For application forms, ring 01-994 8541 and ask for Mr. P. W. Green, or write to BBC Equipment Department, Power Road
Chiswick, London W4 5PG.

BBG

THE COMPANY

Burroughs is an international computer company with derid-wide activities. The high technology of its products
THE JOB:
histallation and maintennce of a wide range of computer
equipment which covers:
: 3 large scale ($\mathbf{8}$ 8800) computer systems and peripherals - 24 small scale (B80) computer systems and peripherals

QUALIFICATIONS:
sis will be on ability.
SALARY:
Salary yill not be a limiting factor in the selection of suitable
candidates.
FOR FURTHER INFORMATION:
Write or phone Paul Dunachie,
Butroughs, , Cumbernauld 668 oB
023-673 5457 day, $041-9425599$ eve

Burroughs
TO MANUFACTURERS, WHOLESALERS \&

BULK BUYERS ONLY
Large quantities of Radio, $T \cdot V$. and Electronic Compinents.
RESIITTORS CARBON $\mathbb{C} C / F / 1 / 1 / 4,1 / 2,1 / 3$. Watt from 1 ohm to
10 meg 10 meg.
RESSTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Cer REAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics,
Cetalamite, C280, etc.
Met. Metalamite, C280, etc.
Convergene Pots, Slider Pots, Electrolytic condensors, Can Types,
Axial, Radial, etc. Axial, Fadial, etc.
Transtormers , cho Transformers, chokes, hopts, tuners, speakers, cables, screened wires,
connecting wiress, screww, nuts, ransistors, ICS, Diodes, etc., etc.
All at Knockout prices, All at K Kockout prices. Come and pay us a visit. Telephone 4452713
445074 . 21 Lodge Lane, M. Finchleys \& MAYCO DISPOSALS

$$
\begin{aligned}
& \text { SOWTER TRANSFORMERS }
\end{aligned}
$$

Nome

ARTICLES FOR SALE	
IC CONVERTER	
	d
COOKBOOK	
	TELETEX, Ceefax and oracie in
by W. G. Jung	
A COMPUTERS	in coiour include 7 7.channel selec.
by S. Ditlea Price: Price	
MICROCOMPUTER-BA	
\{ by J. B. Peatman Price E5.50	
INTRODUCING	later
$\left\{\begin{array}{l}\text { MiCROPROCGESSORS } \\ \text { by G. L. Simons }\end{array}\right.$	Write for further in
OPERATIONAL AMPLIFIERS	Cross hatch generator kit
$\left\{\begin{array}{l}\text { 2nd ed. }\end{array}\right.$	
by G. B. Clayton Price £10.00	B-Y, Grey scale etc. Push-button
3 RADIO HANDBOOK $21 \mathrm{st} \mathrm{od}$.	
by W.1. Orr	Kit
\{ MEVELOPMENT SYSTEMS \&	
STEMS	${ }^{\text {cos }}$
$\left\{\begin{array}{l}\text { by Motorola } \\ \text { g900 FAMIY SYStet price } £ 15.90 \\ \text { S }\end{array}\right.$	${ }^{\text {cout type also gives peak white }}$ and
\{ 9\% DATA BOOK	black levels, batery operated 511^{*}
by Texas Instruments Price $\mathbf{\varepsilon 8 . 4 0}$	
introduction to digital	${ }_{\text {cta }}^{\text {cis }}$
3 TECHNILUES Price $\mathrm{E13.85}$	Case $£ 23.80^{\circ} \mathrm{p} / \mathrm{p}$ E11.20.
THE DESIGN \& DRAFTING OF	
Printed circuits Price E19.50	
	(tor Colour and Mono s20.80*, p / p
THE MODERN BOOK CO.	
Specialists in Scientific	
19-21 PRAED STREET	
LONDON W2 1NP	
Phone 7234185	
Closed Sat. 1 p.m. (8974)	
	${ }^{c}$
ELECTRONIC	
TEST EQUIPMENT	
AND	Oi
	${ }^{\text {Bush}}$ Decca, etc., special ${ }^{\text {a }}$, types
Marconi TF 995 A 2 AM / FM Sig. Gen. Marconi TF 995 A/	
roni TF $2091 / 2902$ Noise System	spares for pople
	MANOR SU
HP $250 B$ RX Meter $£ 200$ R \& S SLDR High Power Sig. Gen. $£ 1000$	LANE, WEST HAMPSTEAD, LON-
	${ }_{\text {EAS }}$ EALY ACESSSIBLE, WEST HAMP:
(e)	
	159, ${ }^{2}$. 13. Callers welcome. Thou-
	at shop premises not normally ad-
Avometer Model 12 trom Amper V 5003 Video Tape Aecorider	vertised. Open daily all week in-
Preter Linx Camera (no lense)	
N Megers	
	WHERE MARKED - VAT 8%). (60
	SERVICES
JTCHGATE LTD.	
Pylo Hill, Winchester Rd.	for all aspects of electronic design.
Fair Oak mampshire Fair Oak 5252	
	${ }^{80}$ Wheatland Lane, Wallasey, Mer
(9986)	seyside, $051-639$ 9122.

Radio Technician

We need a man or woman to work as a Radio Technician at
Heathrow Airport, maintaining both fixed and mobile ground Heathrowication equipment.
Candidates must have a sound technical background in radio
communication and must hold a full clean driving licence communication and must hold a full clean driving licence,
Experience of Pye, Storno and Motorola equipment would be Experience of
an advantage.
Starting pay will be $£ 90.56$ for a 40 -hour week on day time
working which includes a productivity supplement paid working which includes a productivity supplement paid
subject to achievement. If shifts are worked an appropriate premium is paid
As one of the world's leading international airlines British
Airways offers excellent conditions of employment including a Airways offers excellent conditions of employment including a
holiday pay supplement, an index-linked pension scheme,
subsidised restaurants, sports and social facilities and favoursubsidised restaurants, sports and
able holiday air travel opportunities.
For an application form please phone or-897 32463247
between gam and 4 pm or write quoting reference 563 WW RJ to Recruitment \& Selection, British Airways, PO Box ro,
Heathrow Airport - London, Hounslow, Middx. TW6 JA Heathrow Airport - London, Hounslow, Middx. TW6 2JA. British Airways welcomes app
Registered Disabled Persons.

MRMNTED!

REDUNDANT ELECTRONIC \& MATERIALS with precious metal cont
TRANSISTORS \& PRINTED CIRCUIT BOARD COMPUTERS THE COMMERGIAL REFINEETNG CO. Ltd. 171 FARRINGDON ROAD
LONDON, EEIT 3 AAL
 WANTED

 | LS1 |
| :--- | :--- |
| WBB. |
| WANTED semiconductors and clea |
| new |
| surplus |

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money * Used by professional engineers, D.I.Y.
enthusiasts, hobbyists, service engineers. * World-wide proven reliability $*$ Low servicing costs.
$* 20 \mathrm{~K} /$ volt sensitivity and high accuracy * Large mirror scale meter. * Fully protected against overload. * Large range of inexpensive accessories.
* 12 month warranty, backed by a full after * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors Prices from $£ 16.60-£ 32.00+$ VAT Send for full colour leaflet and prices on whole range including accessories. 1 프 = ELECTRONIC - BROKERS LIMITED 49.53 Pancras Road, London NW1 208.
Tel: $01-837$ T81. Telex: 29894. WW - O88 FOR FURTHER DETALLS

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 125-143

Page		Page		Page		
Acoustical Mfg. Co. Ltd. ${ }^{8}$	Hall Electric Ltd.	15	Quantum Electronics	90 105		
AEL Crystals Ambit International and	Harmsworth Towniey \& Co. Lid.					
Amptron Ltd. ${ }^{\text {A2 }}$	Hart Electronics					
Armon Products Ltd.	H/H Electronics	12	Radio Components Specialists	107		
Aspen Electronics Ltd. ${ }_{\text {Astra Elec. Comps. }}$...................... ${ }_{93}^{31}$	H.L. Audio					
Astra Elec. Comps. ${ }^{93}$	H.L. Audio		Ralies P. F. Re, RCs	104 96		
Barkway Electronics Ltd. Barrie Electronics Ltd. Bi-Pre Pak Ltd Bi-Pak Semiconductors Ltd Boss Industrial Mouldings.Ltd Broadcast Training \& Servic ervices Ltd.			R.S.T Valves 123			
		$\ldots 9$	Samson (Electronics) Ltd.			
			Scerte			
	JSP Associates Kef Electric					
Cambridge Learning	Keithley Instruments Ltd Kelsey Acoustic Kirkham Electronics		Service Trading			
				${ }_{32}^{94}$		
CECCorporation 14	, ${ }^{123}$		Shure Electronics Ltd. ${ }_{\text {S }}^{306}$			
	Lascar Elec Levell Electronics Lid. Light Soldering Developments Ltd. Lindos Electronics	${ }_{3}^{92}$		${ }_{\text {23, }}^{20} 220$		
Colomor (Electronics) Ltd. 116		${ }_{9}^{18}$	Surey Electronics Ltd.	979595		
Coloured Photo Service 101		${ }_{97}^{101}$ Lindos teetrics				
${ }_{\text {Compec }}$ Comer Appeciation						
Continental Specialists Corp. 11,23	Maplin Electronic Supplies			Technomatic Ltd. 114		
ajel UK Lto	Martin AssociatesMarshall ${ }^{\text {a }}$ \& Sons (London) Litd.					
Crimson Elektric 18		${ }_{25}^{100}$	(ektronix (Telequipment)			
${ }_{\text {Datong }}^{\text {Display Electronics }}$ (....................... ${ }^{\text {a }}$ 115	MicrocircuitsMicrodigital Microdig, W					
Dominus ${ }^{30}$						
Drake Transformers 28			Valradio Ltd.	25253030942490		
gle/Carter Associates 104			Vero Systems (Electroniie) Ltd.			
etro Tek	Newtronics Newbear Computer Stores	311, 96,124	Videotime Products Viewdata Exhibtion			
Electronic Arokers Ltd Electronic Equipment Ltd.						
			West Hyde Developments Ltd Wilmslow Audio	9489		
GEC M-O Valve 22						
$\underset{\text { Greuld Advance }}{\text { Grenwood Electronics }}$................... ${ }^{\text {a }}$, ${ }_{25}$			Z. \& 1. Aero Services Ltd.	5, 108		

Philips bring you...

Its only low-cost feature is its price

SuperScope is Philips new PM 320715 MHz dual
scilloscope. As well as being the best looking instrutrace oscilloscope. As well as being the best looking isst
ment of its type available, it's also the best value by far.

Look at this unique feature package:

- Philips qual ity and advanced technology in
design and construction. Inside it you'll see an electronic
masterpiece, not a "birds' nest".
able level between peaks. TV triggering too. 5 mV sensitivity - the same X and Y - which is
especially useful for weaker signals. ker signals.
The instrument is also avaiable from the following distributors:

signals in phase with the reference.
Bige
trace space.
- Choice of ground, due to double insulation.
SuperScop is in SuperScope is ideal for audio and video service, education, production - in fact any application which cal
for a sophisticated yet tough all-purpose instrument For a leaflet about SuperScope, write to the Philips Electronic Instruments Department at Pye
Unicam. Unicam.

$$
\begin{aligned}
& \text { ranch } \\
& \text { (0272) } 571404
\end{aligned}
$$

Test \& Measuring
Instruments

Pye Unicam Ltd

PHILIPS

Molicore solderhelps turopés OIS-2 satellite orbit at 23,000 miles

OTS-2. a forerunner of a European communications satellite, was launched from Cape Canaveral on May llth 1978.

Now orbiting the equator at a height of 23.000 miles. OTS - 2 was built for the European Space

- Agency by the MESH consortium, led by British Aerospace Dynamics Group, Stevenage.
In building OTS-2. complete precision was called for. Which is why Etsin Multicore solders were used for many of the soldering operations.

Quite simply. Multicore solders have that kind of reputation. For quality, toưghness and reliability. That's why so many electronics manufacturers won't use anything else.

Next time you need solder of any kind, aim as high as OTS - $2 \ldots$ and use Multicore:

Full details of Ersin Multicore solders. solder chemicals and high purity-bar solderş for automatic sotdering from

Multicore Solders Ltd

Maylands Avenue
Hemel Hempstead Herts HP2 7EP
Tel: Hemel Hempstead 3636
Telex: 82363

[^0]: (B)

 2 Gresham Roud, Brentwond,Esser.

[^1]: Phone: 0706814931
 Phone: 070681493
 Telex 635091 Albion G Att

[^2]: ANDOVER HANTS SP1O 3NN

